基于深度强化学习的机器人路径规划

Yinxin Long, Huajin He
{"title":"基于深度强化学习的机器人路径规划","authors":"Yinxin Long, Huajin He","doi":"10.1109/TOCS50858.2020.9339752","DOIUrl":null,"url":null,"abstract":"Q-learning algorithm based on Markov decision process as a reinforcement learning algorithm can achieve better path planning effect for mobile robot in continuous trial and error. However, Q-learning needs a huge Q-value table, which is easy to cause dimension disaster in decision-making, and it is difficult to get a good path in complex situations. By combining deep learning with reinforcement learning and using the perceptual advantages of deep learning to solve the decision-making problem of reinforcement learning, the deficiency of Q-learning algorithm can be improved. At the same time, the path planning of deep reinforcement learning is simulated by MATLAB, the simulation results show that the deep reinforcement learning can effectively realize the obstacle avoidance of the robot and plan a collision free optimal path for the robot from the starting point to the end point.","PeriodicalId":373862,"journal":{"name":"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Robot path planning based on deep reinforcement learning\",\"authors\":\"Yinxin Long, Huajin He\",\"doi\":\"10.1109/TOCS50858.2020.9339752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Q-learning algorithm based on Markov decision process as a reinforcement learning algorithm can achieve better path planning effect for mobile robot in continuous trial and error. However, Q-learning needs a huge Q-value table, which is easy to cause dimension disaster in decision-making, and it is difficult to get a good path in complex situations. By combining deep learning with reinforcement learning and using the perceptual advantages of deep learning to solve the decision-making problem of reinforcement learning, the deficiency of Q-learning algorithm can be improved. At the same time, the path planning of deep reinforcement learning is simulated by MATLAB, the simulation results show that the deep reinforcement learning can effectively realize the obstacle avoidance of the robot and plan a collision free optimal path for the robot from the starting point to the end point.\",\"PeriodicalId\":373862,\"journal\":{\"name\":\"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TOCS50858.2020.9339752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS50858.2020.9339752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

基于马尔可夫决策过程的Q-learning算法作为一种强化学习算法,可以在不断的试错中获得较好的移动机器人路径规划效果。然而,Q-learning需要一个巨大的q值表,在决策时容易造成维度灾难,在复杂的情况下很难得到一个好的路径。将深度学习与强化学习相结合,利用深度学习的感知优势解决强化学习的决策问题,可以改善Q-learning算法的不足。同时,利用MATLAB对深度强化学习的路径规划进行仿真,仿真结果表明,深度强化学习可以有效地实现机器人的避障,并为机器人规划一条从起点到终点无碰撞的最优路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robot path planning based on deep reinforcement learning
Q-learning algorithm based on Markov decision process as a reinforcement learning algorithm can achieve better path planning effect for mobile robot in continuous trial and error. However, Q-learning needs a huge Q-value table, which is easy to cause dimension disaster in decision-making, and it is difficult to get a good path in complex situations. By combining deep learning with reinforcement learning and using the perceptual advantages of deep learning to solve the decision-making problem of reinforcement learning, the deficiency of Q-learning algorithm can be improved. At the same time, the path planning of deep reinforcement learning is simulated by MATLAB, the simulation results show that the deep reinforcement learning can effectively realize the obstacle avoidance of the robot and plan a collision free optimal path for the robot from the starting point to the end point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信