Adrian Emiell U. Berbano, Hanz Niccole V. Pengson, Cedric Gerard V. Razon, Kristel Chloe G. Tungcul, Seigfred V. Prado
{"title":"利用脑电图信号分析将应激分为情绪应激、精神应激、生理应激和无应激","authors":"Adrian Emiell U. Berbano, Hanz Niccole V. Pengson, Cedric Gerard V. Razon, Kristel Chloe G. Tungcul, Seigfred V. Prado","doi":"10.1109/ICSIPA.2017.8120571","DOIUrl":null,"url":null,"abstract":"The paper presents further research on neural engineering that focuses on the classification of emotional, mental, physical and no stress through the use of Electroencephalography (EEG) signal analysis. Stress is one of the leading causes of several health-related problems and diseases. Therefore, it becomes necessary for people to monitor their stress. The human body acquires and responds to stress in different ways resulting to two classifications of stress namely, mental and emotional stress. Traditional methods in classifying stress such as through questionnaires and self-assessment tests are said to be subjective since they rely on personal judgment. Thus, in this study, stress is classified through an objective measure which is EEG signal analysis. The features of the EEG recordings are then pre-processed, extracted, and selected using Discrete Wavelet Transform (DWT). These features are then ussed as inputs to classify stress using Artificial Neural Network (ANN) and validated using K-fold Cross Validation Method. Lastly, the results from the software assisted method is compared to the results of the traditional method.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Classification of stress into emotional, mental, physical and no stress using electroencephalogram signal analysis\",\"authors\":\"Adrian Emiell U. Berbano, Hanz Niccole V. Pengson, Cedric Gerard V. Razon, Kristel Chloe G. Tungcul, Seigfred V. Prado\",\"doi\":\"10.1109/ICSIPA.2017.8120571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents further research on neural engineering that focuses on the classification of emotional, mental, physical and no stress through the use of Electroencephalography (EEG) signal analysis. Stress is one of the leading causes of several health-related problems and diseases. Therefore, it becomes necessary for people to monitor their stress. The human body acquires and responds to stress in different ways resulting to two classifications of stress namely, mental and emotional stress. Traditional methods in classifying stress such as through questionnaires and self-assessment tests are said to be subjective since they rely on personal judgment. Thus, in this study, stress is classified through an objective measure which is EEG signal analysis. The features of the EEG recordings are then pre-processed, extracted, and selected using Discrete Wavelet Transform (DWT). These features are then ussed as inputs to classify stress using Artificial Neural Network (ANN) and validated using K-fold Cross Validation Method. Lastly, the results from the software assisted method is compared to the results of the traditional method.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of stress into emotional, mental, physical and no stress using electroencephalogram signal analysis
The paper presents further research on neural engineering that focuses on the classification of emotional, mental, physical and no stress through the use of Electroencephalography (EEG) signal analysis. Stress is one of the leading causes of several health-related problems and diseases. Therefore, it becomes necessary for people to monitor their stress. The human body acquires and responds to stress in different ways resulting to two classifications of stress namely, mental and emotional stress. Traditional methods in classifying stress such as through questionnaires and self-assessment tests are said to be subjective since they rely on personal judgment. Thus, in this study, stress is classified through an objective measure which is EEG signal analysis. The features of the EEG recordings are then pre-processed, extracted, and selected using Discrete Wavelet Transform (DWT). These features are then ussed as inputs to classify stress using Artificial Neural Network (ANN) and validated using K-fold Cross Validation Method. Lastly, the results from the software assisted method is compared to the results of the traditional method.