关于一个主要函数在深度神经网络中的应用的说明

Hengjie Chen, Zhong Li
{"title":"关于一个主要函数在深度神经网络中的应用的说明","authors":"Hengjie Chen, Zhong Li","doi":"10.1142/s0219691321500582","DOIUrl":null,"url":null,"abstract":"By applying fundamental mathematical knowledge, this paper proves that the function [Formula: see text] is an integer no less than [Formula: see text] has the property that the difference between the function value of middle point of arbitrarily two adjacent equidistant distribution nodes on [Formula: see text] and the mean of function values of these two nodes is a constant depending only on the number of nodes if and only if [Formula: see text] By them, we establish an important result about deep neural networks that the function [Formula: see text] can be interpolated by a deep Rectified Linear Unit (ReLU) network with depth [Formula: see text] on the equidistant distribution nodes in interval [Formula: see text] and the error of approximation is [Formula: see text] Then based on the main result that has just been proven and the Chebyshev orthogonal polynomials, we construct a deep network and give the error estimate of approximation to polynomials and continuous functions, respectively. In addition, this paper constructs one deep network with local sparse connections, shared weights and activation function [Formula: see text] and discusses its density and complexity.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A note on the applications of one primary function in deep neural networks\",\"authors\":\"Hengjie Chen, Zhong Li\",\"doi\":\"10.1142/s0219691321500582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By applying fundamental mathematical knowledge, this paper proves that the function [Formula: see text] is an integer no less than [Formula: see text] has the property that the difference between the function value of middle point of arbitrarily two adjacent equidistant distribution nodes on [Formula: see text] and the mean of function values of these two nodes is a constant depending only on the number of nodes if and only if [Formula: see text] By them, we establish an important result about deep neural networks that the function [Formula: see text] can be interpolated by a deep Rectified Linear Unit (ReLU) network with depth [Formula: see text] on the equidistant distribution nodes in interval [Formula: see text] and the error of approximation is [Formula: see text] Then based on the main result that has just been proven and the Chebyshev orthogonal polynomials, we construct a deep network and give the error estimate of approximation to polynomials and continuous functions, respectively. In addition, this paper constructs one deep network with local sparse connections, shared weights and activation function [Formula: see text] and discusses its density and complexity.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219691321500582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219691321500582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文运用基本的数学知识,证明了函数[公式:见文]是一个不小于[公式:见文]的整数,它具有这样的性质:任意两个相邻的等距分布节点在[公式:见文]上的中点函数值与这两个节点的函数值均值之差是一个常数,仅当且仅当[公式:见文]通过它们,我们建立了一个关于深度神经网络的重要结果,即函数[公式:见文]可以由深度[公式:见文]的深度[整流线性单元(ReLU)网络在间隔[公式:见文]的等距分布节点上插值,近似误差为[公式:见文]。然后,在已证明的主要结果和切比雪夫正交多项式的基础上,构造了一个深度网络,并分别给出了多项式近似和连续函数近似的误差估计。此外,本文构造了一个具有局部稀疏连接、共享权值和激活函数的深度网络[公式:见文],并讨论了其密度和复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the applications of one primary function in deep neural networks
By applying fundamental mathematical knowledge, this paper proves that the function [Formula: see text] is an integer no less than [Formula: see text] has the property that the difference between the function value of middle point of arbitrarily two adjacent equidistant distribution nodes on [Formula: see text] and the mean of function values of these two nodes is a constant depending only on the number of nodes if and only if [Formula: see text] By them, we establish an important result about deep neural networks that the function [Formula: see text] can be interpolated by a deep Rectified Linear Unit (ReLU) network with depth [Formula: see text] on the equidistant distribution nodes in interval [Formula: see text] and the error of approximation is [Formula: see text] Then based on the main result that has just been proven and the Chebyshev orthogonal polynomials, we construct a deep network and give the error estimate of approximation to polynomials and continuous functions, respectively. In addition, this paper constructs one deep network with local sparse connections, shared weights and activation function [Formula: see text] and discusses its density and complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信