基于HOG和Gabor滤波描述符的手写阿拉伯语单词识别系统

S. Hamida, B. Cherradi, H. Ouajji
{"title":"基于HOG和Gabor滤波描述符的手写阿拉伯语单词识别系统","authors":"S. Hamida, B. Cherradi, H. Ouajji","doi":"10.1109/IRASET48871.2020.9092067","DOIUrl":null,"url":null,"abstract":"Automatic recognition of handwritten Arabic words is a research area opens to a large number of industrial applications. However, the solution to the problem of cursive handwriting recognition still laborious because of the complexity of the morphology of Arabic script. In our work, we study and implement an offline handwritten word recognition system using the IFN / ENIT dataset of Arabic words representing the names of Tunisian cities. We have used two types of descriptors, the oriented gradient histogram (HOG) and Gabor filter for the extraction of features and as a classifier the kNN. Experiments are performed on samples extracted from the IFN/ENIT database. The results highlight the reliability of the kNN classifier for handwritten Arabic word recognition.","PeriodicalId":271840,"journal":{"name":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Handwritten Arabic Words Recognition System Based on HOG and Gabor Filter Descriptors\",\"authors\":\"S. Hamida, B. Cherradi, H. Ouajji\",\"doi\":\"10.1109/IRASET48871.2020.9092067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic recognition of handwritten Arabic words is a research area opens to a large number of industrial applications. However, the solution to the problem of cursive handwriting recognition still laborious because of the complexity of the morphology of Arabic script. In our work, we study and implement an offline handwritten word recognition system using the IFN / ENIT dataset of Arabic words representing the names of Tunisian cities. We have used two types of descriptors, the oriented gradient histogram (HOG) and Gabor filter for the extraction of features and as a classifier the kNN. Experiments are performed on samples extracted from the IFN/ENIT database. The results highlight the reliability of the kNN classifier for handwritten Arabic word recognition.\",\"PeriodicalId\":271840,\"journal\":{\"name\":\"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET48871.2020.9092067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET48871.2020.9092067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

手写体阿拉伯文字的自动识别是一个具有大量工业应用前景的研究领域。然而,由于阿拉伯文形态的复杂性,解决草书的识别问题仍然很困难。在我们的工作中,我们研究并实现了一个离线手写单词识别系统,该系统使用IFN / ENIT数据集来表示突尼斯城市的名称。我们使用了两种类型的描述符,定向梯度直方图(HOG)和Gabor滤波器来提取特征,并将kNN作为分类器。实验是在IFN/ENIT数据库中提取的样本上进行的。结果表明kNN分类器在手写阿拉伯语单词识别中的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Handwritten Arabic Words Recognition System Based on HOG and Gabor Filter Descriptors
Automatic recognition of handwritten Arabic words is a research area opens to a large number of industrial applications. However, the solution to the problem of cursive handwriting recognition still laborious because of the complexity of the morphology of Arabic script. In our work, we study and implement an offline handwritten word recognition system using the IFN / ENIT dataset of Arabic words representing the names of Tunisian cities. We have used two types of descriptors, the oriented gradient histogram (HOG) and Gabor filter for the extraction of features and as a classifier the kNN. Experiments are performed on samples extracted from the IFN/ENIT database. The results highlight the reliability of the kNN classifier for handwritten Arabic word recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信