{"title":"利用上下文感知在占空比广播无线传感器网络","authors":"I. Jemili, Dhouha Ghrab, A. Belghith, M. Mosbah","doi":"10.4018/978-1-5225-7186-5.CH007","DOIUrl":null,"url":null,"abstract":"Operating under duty-cycle mode allows wireless sensor networks to prolong their lifetime. However, this working pattern, with the temporary unavailability of nodes, brings challenges to the network design, mainly for a fundamental service like flooding. The challenging task is to authorize sensors to adopt a duty-cycle mode without inflicting any negative impact on the network performances. Context-awareness offers to sensors the ability to adapt their functional behavior according to many contexts in order to cope with network dynamics. In this context, the authors propose an Enhanced-Efficient Context-Aware Multi-hop Broadcast (E-ECAB) protocol, which relies on multi contextual information to optimize resources usage and satisfy the application requirements in a duty-cycled environment. The authors proved that only one transmission is required to achieve the broadcast operation in almost all situations. Simulation results show that E-ECAB achieves a significant improvement compared to previous work in terms of throughput and end-to-end delay without sacrificing energy efficiency.","PeriodicalId":262624,"journal":{"name":"Semantic Web Science and Real-World Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Leveraging Context-Awareness in Duty-Cycled Broadcast Wireless Sensor Networks\",\"authors\":\"I. Jemili, Dhouha Ghrab, A. Belghith, M. Mosbah\",\"doi\":\"10.4018/978-1-5225-7186-5.CH007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operating under duty-cycle mode allows wireless sensor networks to prolong their lifetime. However, this working pattern, with the temporary unavailability of nodes, brings challenges to the network design, mainly for a fundamental service like flooding. The challenging task is to authorize sensors to adopt a duty-cycle mode without inflicting any negative impact on the network performances. Context-awareness offers to sensors the ability to adapt their functional behavior according to many contexts in order to cope with network dynamics. In this context, the authors propose an Enhanced-Efficient Context-Aware Multi-hop Broadcast (E-ECAB) protocol, which relies on multi contextual information to optimize resources usage and satisfy the application requirements in a duty-cycled environment. The authors proved that only one transmission is required to achieve the broadcast operation in almost all situations. Simulation results show that E-ECAB achieves a significant improvement compared to previous work in terms of throughput and end-to-end delay without sacrificing energy efficiency.\",\"PeriodicalId\":262624,\"journal\":{\"name\":\"Semantic Web Science and Real-World Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Semantic Web Science and Real-World Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-7186-5.CH007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Semantic Web Science and Real-World Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7186-5.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging Context-Awareness in Duty-Cycled Broadcast Wireless Sensor Networks
Operating under duty-cycle mode allows wireless sensor networks to prolong their lifetime. However, this working pattern, with the temporary unavailability of nodes, brings challenges to the network design, mainly for a fundamental service like flooding. The challenging task is to authorize sensors to adopt a duty-cycle mode without inflicting any negative impact on the network performances. Context-awareness offers to sensors the ability to adapt their functional behavior according to many contexts in order to cope with network dynamics. In this context, the authors propose an Enhanced-Efficient Context-Aware Multi-hop Broadcast (E-ECAB) protocol, which relies on multi contextual information to optimize resources usage and satisfy the application requirements in a duty-cycled environment. The authors proved that only one transmission is required to achieve the broadcast operation in almost all situations. Simulation results show that E-ECAB achieves a significant improvement compared to previous work in terms of throughput and end-to-end delay without sacrificing energy efficiency.