{"title":"线性回归中最优子集选择问题的局部分支启发式","authors":"T. Bigler, O. Strub","doi":"10.1109/IEEM.2018.8607366","DOIUrl":null,"url":null,"abstract":"The best subset selection problem in linear regression consists of selecting a small subset with a given maximum cardinality of a set of features, i.e explanatory variables, to build a linear regression model that is able to explain a given set of observations of a response variable as exactly as possible. The motivation in building linear regression models that include only a small number of features is that these models are easier to interpret. In this paper, we present a heuristic based on the concept of local branching. Such a heuristic repeatedly performs local-search iterations by applying mixed-integer programming. In each local-search iteration, we consider a different randomly selected subset of the features to reduce the required computational time. The results of our computational tests demonstrate that the proposed local-branching heuristic delivers better linear regression models than a pure mixed-integer programming approach within a limited amount of computational time.","PeriodicalId":119238,"journal":{"name":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Local-branching Heuristic for the Best Subset Selection Problem in Linear Regression\",\"authors\":\"T. Bigler, O. Strub\",\"doi\":\"10.1109/IEEM.2018.8607366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The best subset selection problem in linear regression consists of selecting a small subset with a given maximum cardinality of a set of features, i.e explanatory variables, to build a linear regression model that is able to explain a given set of observations of a response variable as exactly as possible. The motivation in building linear regression models that include only a small number of features is that these models are easier to interpret. In this paper, we present a heuristic based on the concept of local branching. Such a heuristic repeatedly performs local-search iterations by applying mixed-integer programming. In each local-search iteration, we consider a different randomly selected subset of the features to reduce the required computational time. The results of our computational tests demonstrate that the proposed local-branching heuristic delivers better linear regression models than a pure mixed-integer programming approach within a limited amount of computational time.\",\"PeriodicalId\":119238,\"journal\":{\"name\":\"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEM.2018.8607366\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2018.8607366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Local-branching Heuristic for the Best Subset Selection Problem in Linear Regression
The best subset selection problem in linear regression consists of selecting a small subset with a given maximum cardinality of a set of features, i.e explanatory variables, to build a linear regression model that is able to explain a given set of observations of a response variable as exactly as possible. The motivation in building linear regression models that include only a small number of features is that these models are easier to interpret. In this paper, we present a heuristic based on the concept of local branching. Such a heuristic repeatedly performs local-search iterations by applying mixed-integer programming. In each local-search iteration, we consider a different randomly selected subset of the features to reduce the required computational time. The results of our computational tests demonstrate that the proposed local-branching heuristic delivers better linear regression models than a pure mixed-integer programming approach within a limited amount of computational time.