一种新的网络控制系统稳定性判据

Xiaohua Ge, Xiefu Jiang, Xinxin Zhang
{"title":"一种新的网络控制系统稳定性判据","authors":"Xiaohua Ge, Xiefu Jiang, Xinxin Zhang","doi":"10.1109/ICCTD.2009.73","DOIUrl":null,"url":null,"abstract":"This paper concerns with robust stability criteria of networked control systems (NCSs) with the effects of both the time-varying network-induced delay and data packet dropout taken into consideration. A less conservative delay-dependent stability condition is formulated in the form of a linear matrix inequality based on a Lyapunov–Krasovskii functional. No slack matrix variables are introduced and overly bounding for some term is avoided. Furthermore, a strict proof is given to show less conservatism of the proposed method.","PeriodicalId":269403,"journal":{"name":"2009 International Conference on Computer Technology and Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Stability Criterion of Networked Control Systems\",\"authors\":\"Xiaohua Ge, Xiefu Jiang, Xinxin Zhang\",\"doi\":\"10.1109/ICCTD.2009.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns with robust stability criteria of networked control systems (NCSs) with the effects of both the time-varying network-induced delay and data packet dropout taken into consideration. A less conservative delay-dependent stability condition is formulated in the form of a linear matrix inequality based on a Lyapunov–Krasovskii functional. No slack matrix variables are introduced and overly bounding for some term is avoided. Furthermore, a strict proof is given to show less conservatism of the proposed method.\",\"PeriodicalId\":269403,\"journal\":{\"name\":\"2009 International Conference on Computer Technology and Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computer Technology and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTD.2009.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computer Technology and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTD.2009.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了考虑时变网络时延和数据包丢失影响的网络控制系统的鲁棒稳定性准则。在Lyapunov-Krasovskii泛函的基础上,用线性矩阵不等式的形式给出了一个较保守的时滞相关稳定性条件。不引入松弛矩阵变量,避免了某些项的过度边界。并给出了严格的证明,证明了该方法具有较低的保守性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Stability Criterion of Networked Control Systems
This paper concerns with robust stability criteria of networked control systems (NCSs) with the effects of both the time-varying network-induced delay and data packet dropout taken into consideration. A less conservative delay-dependent stability condition is formulated in the form of a linear matrix inequality based on a Lyapunov–Krasovskii functional. No slack matrix variables are introduced and overly bounding for some term is avoided. Furthermore, a strict proof is given to show less conservatism of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信