使用基于重要抽样的策略搜索方法学习上层策略

Jose Pastor, H. Díaz, L. Armesto, A. Esparza, A. Sala
{"title":"使用基于重要抽样的策略搜索方法学习上层策略","authors":"Jose Pastor, H. Díaz, L. Armesto, A. Esparza, A. Sala","doi":"10.1109/ICOSC.2018.8587772","DOIUrl":null,"url":null,"abstract":"Policy search methods are a successful approach to reinforcement learning. These allow to learn upper-level policies whose main advantage is that these distributions explore directly in the parameter space. The contribution of this paper is to propose an algorithm based on importance sampling methods and local linear regression that uses the samples in an efficient way. In order to get this aim, we propose to include information of all the past samples in the learning process using importance sampling methods. Additionally, we use the gradient direction of the linear local model reward to explore regions where the prediction of the reward could be better.","PeriodicalId":153985,"journal":{"name":"2018 7th International Conference on Systems and Control (ICSC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Upper-Level Policy using Importance Sampling-based Policy Search Method\",\"authors\":\"Jose Pastor, H. Díaz, L. Armesto, A. Esparza, A. Sala\",\"doi\":\"10.1109/ICOSC.2018.8587772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Policy search methods are a successful approach to reinforcement learning. These allow to learn upper-level policies whose main advantage is that these distributions explore directly in the parameter space. The contribution of this paper is to propose an algorithm based on importance sampling methods and local linear regression that uses the samples in an efficient way. In order to get this aim, we propose to include information of all the past samples in the learning process using importance sampling methods. Additionally, we use the gradient direction of the linear local model reward to explore regions where the prediction of the reward could be better.\",\"PeriodicalId\":153985,\"journal\":{\"name\":\"2018 7th International Conference on Systems and Control (ICSC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th International Conference on Systems and Control (ICSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSC.2018.8587772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2018.8587772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

策略搜索方法是一种成功的强化学习方法。这些允许学习上层策略,其主要优点是这些分布直接在参数空间中进行探索。本文的贡献在于提出了一种基于重要抽样方法和局部线性回归的算法,该算法有效地利用了样本。为了达到这一目的,我们建议使用重要性抽样方法在学习过程中包含所有过去样本的信息。此外,我们使用线性局部模型奖励的梯度方向来探索奖励预测可以更好的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Upper-Level Policy using Importance Sampling-based Policy Search Method
Policy search methods are a successful approach to reinforcement learning. These allow to learn upper-level policies whose main advantage is that these distributions explore directly in the parameter space. The contribution of this paper is to propose an algorithm based on importance sampling methods and local linear regression that uses the samples in an efficient way. In order to get this aim, we propose to include information of all the past samples in the learning process using importance sampling methods. Additionally, we use the gradient direction of the linear local model reward to explore regions where the prediction of the reward could be better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信