学习在信任自适应代理中的应用

Yvonne Bernard, Jan Kantert, Lukas Klejnowski, N. Schreiber, C. Müller-Schloer
{"title":"学习在信任自适应代理中的应用","authors":"Yvonne Bernard, Jan Kantert, Lukas Klejnowski, N. Schreiber, C. Müller-Schloer","doi":"10.1109/SASOW.2013.28","DOIUrl":null,"url":null,"abstract":"In this paper we analyse and evaluate, in which ways learning techniques can be applied to agents in an open system, which have to map continuous situations into a continuous action space. The agents are part of an open desktop grid, where agents can offer and use computational power of other volunteer agents in order to improve their speedup for bag of-task applications. Moreover, the agents use a trust-based mechanism, which enables the system to exclude misbehaving agents from the community. In this paper, the decision mechanism of such agents is enhanced using learning techniques to determine optimal cooperation thresholds.","PeriodicalId":397020,"journal":{"name":"2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of Learning to Trust-Adaptive Agents\",\"authors\":\"Yvonne Bernard, Jan Kantert, Lukas Klejnowski, N. Schreiber, C. Müller-Schloer\",\"doi\":\"10.1109/SASOW.2013.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyse and evaluate, in which ways learning techniques can be applied to agents in an open system, which have to map continuous situations into a continuous action space. The agents are part of an open desktop grid, where agents can offer and use computational power of other volunteer agents in order to improve their speedup for bag of-task applications. Moreover, the agents use a trust-based mechanism, which enables the system to exclude misbehaving agents from the community. In this paper, the decision mechanism of such agents is enhanced using learning techniques to determine optimal cooperation thresholds.\",\"PeriodicalId\":397020,\"journal\":{\"name\":\"2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SASOW.2013.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASOW.2013.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们分析和评估了学习技术可以应用于开放系统中的代理的方式,这些系统必须将连续的情况映射到连续的动作空间中。代理是开放桌面网格的一部分,其中代理可以提供和使用其他志愿代理的计算能力,以提高任务包应用程序的加速。此外,代理使用基于信任的机制,使系统能够将行为不端的代理排除在社区之外。本文利用学习技术增强了智能体的决策机制,以确定最优合作阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Learning to Trust-Adaptive Agents
In this paper we analyse and evaluate, in which ways learning techniques can be applied to agents in an open system, which have to map continuous situations into a continuous action space. The agents are part of an open desktop grid, where agents can offer and use computational power of other volunteer agents in order to improve their speedup for bag of-task applications. Moreover, the agents use a trust-based mechanism, which enables the system to exclude misbehaving agents from the community. In this paper, the decision mechanism of such agents is enhanced using learning techniques to determine optimal cooperation thresholds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信