基于GRNN的TMA跨介质入水冲击载荷分析

Dong Hao, J. Yu
{"title":"基于GRNN的TMA跨介质入水冲击载荷分析","authors":"Dong Hao, J. Yu","doi":"10.1145/3556677.3556680","DOIUrl":null,"url":null,"abstract":"The investigation on the water-entry impact load of the trans-medium aircraft (TMA) during the media-cross procedure was presented in this paper. The generalized regression neural network (GRNN) is adopted to described the characteristics of the water-entry impact load which is performed by the acceleration variable. In this paper, the train data of the water-entry impact load with the velocity 0, 2m/s, 4m/s, 6m/s, 8m/s, the angle 90°, 80°, 70°, 60°, 50°, the attitude 90°, 80°, 70°, 60°, 50° are generated by the finite element method based on the coupled Eulerian-Lagrangian (CEL) algorithm. The results show that the GRNN has a good performance on approximating the impact load of the TMA with the root mean square error (RMSE) 19.005. The deep learning algorithm for characterizing water-entry impact load can supply a good reference to the structural load evaluation of the TMA.","PeriodicalId":350340,"journal":{"name":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Presentation of water-entry impact load for TMA during media-cross procedure based on GRNN\",\"authors\":\"Dong Hao, J. Yu\",\"doi\":\"10.1145/3556677.3556680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The investigation on the water-entry impact load of the trans-medium aircraft (TMA) during the media-cross procedure was presented in this paper. The generalized regression neural network (GRNN) is adopted to described the characteristics of the water-entry impact load which is performed by the acceleration variable. In this paper, the train data of the water-entry impact load with the velocity 0, 2m/s, 4m/s, 6m/s, 8m/s, the angle 90°, 80°, 70°, 60°, 50°, the attitude 90°, 80°, 70°, 60°, 50° are generated by the finite element method based on the coupled Eulerian-Lagrangian (CEL) algorithm. The results show that the GRNN has a good performance on approximating the impact load of the TMA with the root mean square error (RMSE) 19.005. The deep learning algorithm for characterizing water-entry impact load can supply a good reference to the structural load evaluation of the TMA.\",\"PeriodicalId\":350340,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Deep Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556677.3556680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Deep Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556677.3556680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对跨介质飞行器在跨介质过程中的入水冲击载荷进行了研究。采用广义回归神经网络(GRNN)来描述由加速度变量施加入水冲击载荷的特征。本文采用基于耦合欧拉-拉格朗日(CEL)算法的有限元方法,生成了速度为0、2m/s、4m/s、6m/s、8m/s,角度为90°、80°、70°、60°、50°,姿态为90°、80°、70°、60°、50°的入水冲击载荷的列车数据。结果表明,GRNN对TMA的冲击载荷具有较好的逼近性能,均方根误差(RMSE)为19.005。深度学习算法表征入水冲击荷载,可为TMA结构荷载评价提供很好的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presentation of water-entry impact load for TMA during media-cross procedure based on GRNN
The investigation on the water-entry impact load of the trans-medium aircraft (TMA) during the media-cross procedure was presented in this paper. The generalized regression neural network (GRNN) is adopted to described the characteristics of the water-entry impact load which is performed by the acceleration variable. In this paper, the train data of the water-entry impact load with the velocity 0, 2m/s, 4m/s, 6m/s, 8m/s, the angle 90°, 80°, 70°, 60°, 50°, the attitude 90°, 80°, 70°, 60°, 50° are generated by the finite element method based on the coupled Eulerian-Lagrangian (CEL) algorithm. The results show that the GRNN has a good performance on approximating the impact load of the TMA with the root mean square error (RMSE) 19.005. The deep learning algorithm for characterizing water-entry impact load can supply a good reference to the structural load evaluation of the TMA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信