基于图数据技术的电网知识图谱优化技术研究

Chengbo Hu, Ziquan Liu, Jinggang Yang
{"title":"基于图数据技术的电网知识图谱优化技术研究","authors":"Chengbo Hu, Ziquan Liu, Jinggang Yang","doi":"10.1109/ICDSBA51020.2020.00061","DOIUrl":null,"url":null,"abstract":"Power grid knowledge is an important component of power grid data. With the rapid development of power grid, the knowledge data of power grid is increasing greatly, and its data scale is becoming more and more huge. Through the research of graph data technology, the knowledge data of power grid is optimized. The optimized knowledge map can meet the needs of rapid, efficient, accurate and stable application of power grid knowledge data.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Optimization Technology of Power Grid Knowledge Map Based on Graph Data Technology\",\"authors\":\"Chengbo Hu, Ziquan Liu, Jinggang Yang\",\"doi\":\"10.1109/ICDSBA51020.2020.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power grid knowledge is an important component of power grid data. With the rapid development of power grid, the knowledge data of power grid is increasing greatly, and its data scale is becoming more and more huge. Through the research of graph data technology, the knowledge data of power grid is optimized. The optimized knowledge map can meet the needs of rapid, efficient, accurate and stable application of power grid knowledge data.\",\"PeriodicalId\":354742,\"journal\":{\"name\":\"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSBA51020.2020.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电网知识是电网数据的重要组成部分。随着电网的快速发展,电网的知识数据急剧增加,数据规模越来越庞大。通过对图数据技术的研究,对电网的知识数据进行了优化。优化后的知识图谱能够满足电网知识数据快速、高效、准确、稳定应用的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Optimization Technology of Power Grid Knowledge Map Based on Graph Data Technology
Power grid knowledge is an important component of power grid data. With the rapid development of power grid, the knowledge data of power grid is increasing greatly, and its data scale is becoming more and more huge. Through the research of graph data technology, the knowledge data of power grid is optimized. The optimized knowledge map can meet the needs of rapid, efficient, accurate and stable application of power grid knowledge data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信