基于变间隔采样和线性插值的雷达传感器网络目标识别

Jen-Shiun Chen
{"title":"基于变间隔采样和线性插值的雷达传感器网络目标识别","authors":"Jen-Shiun Chen","doi":"10.1109/BWCCA.2013.27","DOIUrl":null,"url":null,"abstract":"Linearly interpolated target features are used for target identification, including amplitude and complex features generated from multifrequency radar target returns in the resonance region. Based on the inverse Fast Fourier Transform, an efficient method for estimating the distance between a complex feature and an interpolated one is developed. Using a variable-interval re-sampling scheme, an algorithm is developed for condensing the reference sets for nearest-neighbor target identification. Two algorithms are developed for target identification by radar sensor networks using data fusing rules and the linearly interpolated features. Computer simulation results are presented that demonstrate the effectiveness of the proposed methods.","PeriodicalId":227978,"journal":{"name":"2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Target Identification by Radar Sensor Networks with Variable-Interval Sampling and Linear Interpolation\",\"authors\":\"Jen-Shiun Chen\",\"doi\":\"10.1109/BWCCA.2013.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linearly interpolated target features are used for target identification, including amplitude and complex features generated from multifrequency radar target returns in the resonance region. Based on the inverse Fast Fourier Transform, an efficient method for estimating the distance between a complex feature and an interpolated one is developed. Using a variable-interval re-sampling scheme, an algorithm is developed for condensing the reference sets for nearest-neighbor target identification. Two algorithms are developed for target identification by radar sensor networks using data fusing rules and the linearly interpolated features. Computer simulation results are presented that demonstrate the effectiveness of the proposed methods.\",\"PeriodicalId\":227978,\"journal\":{\"name\":\"2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BWCCA.2013.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BWCCA.2013.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目标识别采用线性插值目标特征,包括多频雷达目标回波在共振区域产生的幅值和复杂特征。基于快速傅里叶反变换,提出了一种估计复杂特征与插值特征之间距离的有效方法。采用变间隔重采样方案,提出了一种用于最近邻目标识别的参考集压缩算法。提出了两种基于数据融合规则和线性插值特征的雷达传感器网络目标识别算法。计算机仿真结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Identification by Radar Sensor Networks with Variable-Interval Sampling and Linear Interpolation
Linearly interpolated target features are used for target identification, including amplitude and complex features generated from multifrequency radar target returns in the resonance region. Based on the inverse Fast Fourier Transform, an efficient method for estimating the distance between a complex feature and an interpolated one is developed. Using a variable-interval re-sampling scheme, an algorithm is developed for condensing the reference sets for nearest-neighbor target identification. Two algorithms are developed for target identification by radar sensor networks using data fusing rules and the linearly interpolated features. Computer simulation results are presented that demonstrate the effectiveness of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信