E. Hanafi, Philippa A. Martin, Peter J. Smith, A. Coulson
{"title":"在各种衰落信道上的最快频谱感知性能","authors":"E. Hanafi, Philippa A. Martin, Peter J. Smith, A. Coulson","doi":"10.1109/AusCTW.2013.6510047","DOIUrl":null,"url":null,"abstract":"In this paper, we study the performance of quickest spectrum sensing when the received signal experiences various fading conditions, including the time-invariant, Rayleigh, Rician, Nakagami-m and the F channel. We prove that the power of the complex received signal is a sufficient statistic and derive the probability density function of the received signal amplitude for all of these fading cases. Simulation results reveal that the sensing performance degrades with the severity of the fading as well as the level of temporal correlation. We also consider mis-matched channel conditions and show that the average detection delay depends greatly on the channel but very little on the nature of the detector.","PeriodicalId":177106,"journal":{"name":"2013 Australian Communications Theory Workshop (AusCTW)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Performance of quickest spectrum sensing over various fading channels\",\"authors\":\"E. Hanafi, Philippa A. Martin, Peter J. Smith, A. Coulson\",\"doi\":\"10.1109/AusCTW.2013.6510047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the performance of quickest spectrum sensing when the received signal experiences various fading conditions, including the time-invariant, Rayleigh, Rician, Nakagami-m and the F channel. We prove that the power of the complex received signal is a sufficient statistic and derive the probability density function of the received signal amplitude for all of these fading cases. Simulation results reveal that the sensing performance degrades with the severity of the fading as well as the level of temporal correlation. We also consider mis-matched channel conditions and show that the average detection delay depends greatly on the channel but very little on the nature of the detector.\",\"PeriodicalId\":177106,\"journal\":{\"name\":\"2013 Australian Communications Theory Workshop (AusCTW)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Australian Communications Theory Workshop (AusCTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AusCTW.2013.6510047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Communications Theory Workshop (AusCTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AusCTW.2013.6510047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance of quickest spectrum sensing over various fading channels
In this paper, we study the performance of quickest spectrum sensing when the received signal experiences various fading conditions, including the time-invariant, Rayleigh, Rician, Nakagami-m and the F channel. We prove that the power of the complex received signal is a sufficient statistic and derive the probability density function of the received signal amplitude for all of these fading cases. Simulation results reveal that the sensing performance degrades with the severity of the fading as well as the level of temporal correlation. We also consider mis-matched channel conditions and show that the average detection delay depends greatly on the channel but very little on the nature of the detector.