多视角多曝光立体

Alejandro J. Troccoli, S. B. Kang, S. Seitz
{"title":"多视角多曝光立体","authors":"Alejandro J. Troccoli, S. B. Kang, S. Seitz","doi":"10.1109/3DPVT.2006.98","DOIUrl":null,"url":null,"abstract":"Multi-view stereo algorithms typically rely on same-exposure images as inputs due to the brightness constancy assumption. While state-of-the-art depth results are excellent, they do not produce high-dynamic range textures required for high-quality view reconstruction. In this paper, we propose a technique that adapts multi-view stereo for different exposure inputs to simultaneously recover reliable dense depth and high dynamic range textures. In our technique, we use an exposure-invariant similarity statistic to establish correspondences, through which we robustly extract the camera radiometric response function and the image exposures. This enables us to then convert all images to radiance space and selectively use the radiance data for dense depth and high dynamic range texture recovery. We show results for synthetic and real scenes.","PeriodicalId":346673,"journal":{"name":"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Multi-View Multi-Exposure Stereo\",\"authors\":\"Alejandro J. Troccoli, S. B. Kang, S. Seitz\",\"doi\":\"10.1109/3DPVT.2006.98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view stereo algorithms typically rely on same-exposure images as inputs due to the brightness constancy assumption. While state-of-the-art depth results are excellent, they do not produce high-dynamic range textures required for high-quality view reconstruction. In this paper, we propose a technique that adapts multi-view stereo for different exposure inputs to simultaneously recover reliable dense depth and high dynamic range textures. In our technique, we use an exposure-invariant similarity statistic to establish correspondences, through which we robustly extract the camera radiometric response function and the image exposures. This enables us to then convert all images to radiance space and selectively use the radiance data for dense depth and high dynamic range texture recovery. We show results for synthetic and real scenes.\",\"PeriodicalId\":346673,\"journal\":{\"name\":\"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DPVT.2006.98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DPVT.2006.98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

由于亮度恒定的假设,多视图立体算法通常依赖于相同曝光的图像作为输入。虽然最先进的深度结果非常出色,但它们不能产生高质量视图重建所需的高动态范围纹理。在本文中,我们提出了一种适应不同曝光输入的多视点立体技术,以同时恢复可靠的密集深度和高动态范围纹理。在我们的技术中,我们使用曝光不变相似统计量来建立对应关系,通过它我们稳健地提取相机辐射响应函数和图像曝光。这使我们能够将所有图像转换为亮度空间,并有选择地使用亮度数据进行密集深度和高动态范围纹理恢复。我们展示了合成场景和真实场景的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-View Multi-Exposure Stereo
Multi-view stereo algorithms typically rely on same-exposure images as inputs due to the brightness constancy assumption. While state-of-the-art depth results are excellent, they do not produce high-dynamic range textures required for high-quality view reconstruction. In this paper, we propose a technique that adapts multi-view stereo for different exposure inputs to simultaneously recover reliable dense depth and high dynamic range textures. In our technique, we use an exposure-invariant similarity statistic to establish correspondences, through which we robustly extract the camera radiometric response function and the image exposures. This enables us to then convert all images to radiance space and selectively use the radiance data for dense depth and high dynamic range texture recovery. We show results for synthetic and real scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信