基于适应度均衡遗传算法的上下文敏感文本挖掘

Maciej Huk, J. Kwiatkowski, Dariusz Konieczny, M. Kedziora, Jolanta Mizera-Pietraszko
{"title":"基于适应度均衡遗传算法的上下文敏感文本挖掘","authors":"Maciej Huk, J. Kwiatkowski, Dariusz Konieczny, M. Kedziora, Jolanta Mizera-Pietraszko","doi":"10.1109/CYBConf.2015.7175957","DOIUrl":null,"url":null,"abstract":"Contextual processing is a great challenge for information retrieval study - the most approved techniques include scanning content of HTML web pages, user supported metadata analysis, automatic inference grounded on knowledge base, or content-oriented digital documents analysis. We propose a meta-heuristic by making use of Genetic Algorithms for Contextual Search (GACS) built on genetic programming (GP) and custom fitness leveling function to optimize contextual queries in exact search that represents unstructured phrases generated by the user. Our findings show that the queries built with GACS can significantly optimize the retrieval process.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Context-sensitive text mining with fitness leveling Genetic Algorithm\",\"authors\":\"Maciej Huk, J. Kwiatkowski, Dariusz Konieczny, M. Kedziora, Jolanta Mizera-Pietraszko\",\"doi\":\"10.1109/CYBConf.2015.7175957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contextual processing is a great challenge for information retrieval study - the most approved techniques include scanning content of HTML web pages, user supported metadata analysis, automatic inference grounded on knowledge base, or content-oriented digital documents analysis. We propose a meta-heuristic by making use of Genetic Algorithms for Contextual Search (GACS) built on genetic programming (GP) and custom fitness leveling function to optimize contextual queries in exact search that represents unstructured phrases generated by the user. Our findings show that the queries built with GACS can significantly optimize the retrieval process.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

上下文处理对信息检索研究来说是一个巨大的挑战——最被认可的技术包括扫描HTML网页的内容、用户支持的元数据分析、基于知识库的自动推理或面向内容的数字文档分析。本文提出了一种元启发式方法,利用基于遗传规划(GP)和自定义适应度水平函数的上下文搜索遗传算法(GACS)来优化用户生成的非结构化短语的精确搜索上下文查询。我们的研究结果表明,使用GACS构建的查询可以显著优化检索过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-sensitive text mining with fitness leveling Genetic Algorithm
Contextual processing is a great challenge for information retrieval study - the most approved techniques include scanning content of HTML web pages, user supported metadata analysis, automatic inference grounded on knowledge base, or content-oriented digital documents analysis. We propose a meta-heuristic by making use of Genetic Algorithms for Contextual Search (GACS) built on genetic programming (GP) and custom fitness leveling function to optimize contextual queries in exact search that represents unstructured phrases generated by the user. Our findings show that the queries built with GACS can significantly optimize the retrieval process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信