用卷积神经网络预测匈牙利福林汇率

Svitlana Galeshchuk, Y. Demazeau
{"title":"用卷积神经网络预测匈牙利福林汇率","authors":"Svitlana Galeshchuk, Y. Demazeau","doi":"10.1109/BESC.2017.8256358","DOIUrl":null,"url":null,"abstract":"This paper investigates the advantages of deep learning methods, in particular convolutional neural networks, to predict the exchange rate for non-reserve currencies of developed economies. Our findings prove better performance of deep learning methods comparing to the other available techniques.","PeriodicalId":142098,"journal":{"name":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Forecasting hungarian forint exchange rate with convolutional neural networks\",\"authors\":\"Svitlana Galeshchuk, Y. Demazeau\",\"doi\":\"10.1109/BESC.2017.8256358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the advantages of deep learning methods, in particular convolutional neural networks, to predict the exchange rate for non-reserve currencies of developed economies. Our findings prove better performance of deep learning methods comparing to the other available techniques.\",\"PeriodicalId\":142098,\"journal\":{\"name\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BESC.2017.8256358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Behavioral, Economic, Socio-cultural Computing (BESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BESC.2017.8256358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了深度学习方法,特别是卷积神经网络在预测发达经济体非储备货币汇率方面的优势。我们的研究结果证明,与其他可用的技术相比,深度学习方法的性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forecasting hungarian forint exchange rate with convolutional neural networks
This paper investigates the advantages of deep learning methods, in particular convolutional neural networks, to predict the exchange rate for non-reserve currencies of developed economies. Our findings prove better performance of deep learning methods comparing to the other available techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信