矩阵共轭的认证

D. Grigoriev, V. Shpilrain
{"title":"矩阵共轭的认证","authors":"D. Grigoriev, V. Shpilrain","doi":"10.1515/GCC.2009.199","DOIUrl":null,"url":null,"abstract":"We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X –1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Authentication from Matrix Conjugation\",\"authors\":\"D. Grigoriev, V. Shpilrain\",\"doi\":\"10.1515/GCC.2009.199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X –1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/GCC.2009.199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2009.199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

我们提出了一种身份验证方案,在这种方案中,如果没有找到证明者的长期私钥,伪造(又名冒充)似乎是不可行的。后者将从解决平台(非交换)半群中的共轭搜索问题开始,即从X -1 AX和a中恢复X。我们在这里提出的平台半群是在环上截断的多变量多项式上的n × n矩阵的半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Authentication from Matrix Conjugation
We propose an authentication scheme where forgery (a.k.a. impersonation) seems infeasible without finding the prover's long-term private key. The latter would follow from solving the conjugacy search problem in the platform (noncommutative) semigroup, i.e., to recovering X from X –1 AX and A. The platform semigroup that we suggest here is the semigroup of n × n matrices over truncated multivariable polynomials over a ring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信