O-RAN架构下无线电资源管理的RL方法

Federico Mungari
{"title":"O-RAN架构下无线电资源管理的RL方法","authors":"Federico Mungari","doi":"10.1109/SECON52354.2021.9491579","DOIUrl":null,"url":null,"abstract":"The new generation mobile network requires flexibility and efficiency in radio link management (RRM), in order to support a wide range of services and applications with diverse target KPI values. In this perspective, the O-RAN Alliance introduces a flexible, intelligent and virtualized RAN architecture (O-RAN), which integrates artificial intelligence models for effective network and radio resource management (RRM). This work leverages an O-RAN platform to develop and assess the performance of an RRM solution based on Reinforcement Learning (RL) and deployed as xApp in the O-RAN ecosystem. The framework receives periodic reports from the O-RAN Distributed Unit (DU) about the network status and dynamically adapts the per-flow resource allocation as well as the modulation and coding scheme to meet the traffic flow KPI requirements.","PeriodicalId":120945,"journal":{"name":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An RL Approach for Radio Resource Management in the O-RAN Architecture\",\"authors\":\"Federico Mungari\",\"doi\":\"10.1109/SECON52354.2021.9491579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new generation mobile network requires flexibility and efficiency in radio link management (RRM), in order to support a wide range of services and applications with diverse target KPI values. In this perspective, the O-RAN Alliance introduces a flexible, intelligent and virtualized RAN architecture (O-RAN), which integrates artificial intelligence models for effective network and radio resource management (RRM). This work leverages an O-RAN platform to develop and assess the performance of an RRM solution based on Reinforcement Learning (RL) and deployed as xApp in the O-RAN ecosystem. The framework receives periodic reports from the O-RAN Distributed Unit (DU) about the network status and dynamically adapts the per-flow resource allocation as well as the modulation and coding scheme to meet the traffic flow KPI requirements.\",\"PeriodicalId\":120945,\"journal\":{\"name\":\"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON52354.2021.9491579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON52354.2021.9491579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

新一代移动网络要求无线电链路管理(RRM)的灵活性和效率,以支持具有不同目标KPI值的广泛服务和应用。从这个角度来看,O-RAN联盟引入了一种灵活、智能和虚拟化的RAN架构(O-RAN),该架构集成了人工智能模型,用于有效的网络和无线电资源管理(RRM)。这项工作利用O-RAN平台来开发和评估基于强化学习(RL)的RRM解决方案的性能,并在O-RAN生态系统中作为xApp部署。该框架从O-RAN分布式单元(DU)接收关于网络状态的定期报告,并动态调整每流的资源分配以及调制和编码方案,以满足流量KPI要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An RL Approach for Radio Resource Management in the O-RAN Architecture
The new generation mobile network requires flexibility and efficiency in radio link management (RRM), in order to support a wide range of services and applications with diverse target KPI values. In this perspective, the O-RAN Alliance introduces a flexible, intelligent and virtualized RAN architecture (O-RAN), which integrates artificial intelligence models for effective network and radio resource management (RRM). This work leverages an O-RAN platform to develop and assess the performance of an RRM solution based on Reinforcement Learning (RL) and deployed as xApp in the O-RAN ecosystem. The framework receives periodic reports from the O-RAN Distributed Unit (DU) about the network status and dynamically adapts the per-flow resource allocation as well as the modulation and coding scheme to meet the traffic flow KPI requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信