基于R-CNN的发动机部件质量评估自动目视检测系统

A. Léger, G. le Goic, E. Fauvet, D. Fofi, Rémi Kornalewski
{"title":"基于R-CNN的发动机部件质量评估自动目视检测系统","authors":"A. Léger, G. le Goic, E. Fauvet, D. Fofi, Rémi Kornalewski","doi":"10.1117/12.2586575","DOIUrl":null,"url":null,"abstract":"In this paper, we attempt to answer to a quality control problem in the context of an industrial serial production of lower plates (wheel suspensions) for the automotive industry. These frame parts are produced by a 2000-ton stamping machine that can reach 1800 parts per hour. The quality of these parts is assessed by a visual quality control operation. This operation is time-consuming. Moreover, many factors can affect its performance, as the attention of the operators in charge, or a too rapid inspection completion time, and non-detection defects lead to high supplementary costs. To answer this issue and automate this process operation, a system based on a vision system coupled to a pre-trained Convolutional Neural Networks (Mask R-CNN)1 has been designed and implemented. In addition, an artificial enlargement of the reference image base is proposed to improve the robustness of the identification, and reduce the sensitivity of the results to potential imaging artefacts due to non-controlled environments factors such as overexposure, blur, shadows or oil fog.","PeriodicalId":295011,"journal":{"name":"International Conference on Quality Control by Artificial Vision","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"R-CNN based automated visual inspection system for engine parts quality assessment\",\"authors\":\"A. Léger, G. le Goic, E. Fauvet, D. Fofi, Rémi Kornalewski\",\"doi\":\"10.1117/12.2586575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we attempt to answer to a quality control problem in the context of an industrial serial production of lower plates (wheel suspensions) for the automotive industry. These frame parts are produced by a 2000-ton stamping machine that can reach 1800 parts per hour. The quality of these parts is assessed by a visual quality control operation. This operation is time-consuming. Moreover, many factors can affect its performance, as the attention of the operators in charge, or a too rapid inspection completion time, and non-detection defects lead to high supplementary costs. To answer this issue and automate this process operation, a system based on a vision system coupled to a pre-trained Convolutional Neural Networks (Mask R-CNN)1 has been designed and implemented. In addition, an artificial enlargement of the reference image base is proposed to improve the robustness of the identification, and reduce the sensitivity of the results to potential imaging artefacts due to non-controlled environments factors such as overexposure, blur, shadows or oil fog.\",\"PeriodicalId\":295011,\"journal\":{\"name\":\"International Conference on Quality Control by Artificial Vision\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Quality Control by Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2586575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Quality Control by Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2586575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们试图回答一个质量控制问题,在工业系列生产下板(车轮悬架)的背景下,为汽车工业。这些车架零件由一台2000吨冲压机床生产,每小时可生产1800个零件。这些零件的质量是通过目视质量控制操作来评定的。该操作耗时较长。而且,影响其性能的因素很多,如操作人员的不重视,或检查完成时间过快,以及未检测到的缺陷导致补充成本高。为了解决这一问题并使这一过程操作自动化,设计并实现了一个基于视觉系统与预训练卷积神经网络(Mask R-CNN)1相结合的系统。此外,提出了对参考图像基进行人工放大,以提高识别的鲁棒性,并降低结果对过度曝光、模糊、阴影或油雾等非受控环境因素导致的潜在成像伪影的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
R-CNN based automated visual inspection system for engine parts quality assessment
In this paper, we attempt to answer to a quality control problem in the context of an industrial serial production of lower plates (wheel suspensions) for the automotive industry. These frame parts are produced by a 2000-ton stamping machine that can reach 1800 parts per hour. The quality of these parts is assessed by a visual quality control operation. This operation is time-consuming. Moreover, many factors can affect its performance, as the attention of the operators in charge, or a too rapid inspection completion time, and non-detection defects lead to high supplementary costs. To answer this issue and automate this process operation, a system based on a vision system coupled to a pre-trained Convolutional Neural Networks (Mask R-CNN)1 has been designed and implemented. In addition, an artificial enlargement of the reference image base is proposed to improve the robustness of the identification, and reduce the sensitivity of the results to potential imaging artefacts due to non-controlled environments factors such as overexposure, blur, shadows or oil fog.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信