基于XGboost算法的无线信号老年人跌倒检测

Juan Wen, Zhiyong Yang, Lei Jin
{"title":"基于XGboost算法的无线信号老年人跌倒检测","authors":"Juan Wen, Zhiyong Yang, Lei Jin","doi":"10.1109/SmartIoT49966.2020.00054","DOIUrl":null,"url":null,"abstract":"With the rapid population ageing and increase of the elderly who live alone, there is a growing demand for intelligent monitoring, especially fall detection systems. In this paper, based on received signal strength (RSS) and machine learning algorithm, a fall detection method is proposed. It using multi-domain features, including time-domain and wavelet-domain, and Boost algorithm trains a model to discriminate fall and other actions, such as, sit, stand and squat. The experimental results show that the proposed method can identify falls well.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"347 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wireless Signal Based Elderly Fall Detection Using XGboost Algorithm\",\"authors\":\"Juan Wen, Zhiyong Yang, Lei Jin\",\"doi\":\"10.1109/SmartIoT49966.2020.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid population ageing and increase of the elderly who live alone, there is a growing demand for intelligent monitoring, especially fall detection systems. In this paper, based on received signal strength (RSS) and machine learning algorithm, a fall detection method is proposed. It using multi-domain features, including time-domain and wavelet-domain, and Boost algorithm trains a model to discriminate fall and other actions, such as, sit, stand and squat. The experimental results show that the proposed method can identify falls well.\",\"PeriodicalId\":399187,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"347 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT49966.2020.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着人口老龄化的快速发展和独居老人的增多,对智能监控特别是跌倒检测系统的需求日益增长。本文提出了一种基于接收信号强度(RSS)和机器学习算法的跌倒检测方法。它利用时域和小波域的多域特征,利用Boost算法训练一个模型来区分跌倒和其他动作,如坐、站和蹲。实验结果表明,该方法能较好地识别落点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless Signal Based Elderly Fall Detection Using XGboost Algorithm
With the rapid population ageing and increase of the elderly who live alone, there is a growing demand for intelligent monitoring, especially fall detection systems. In this paper, based on received signal strength (RSS) and machine learning algorithm, a fall detection method is proposed. It using multi-domain features, including time-domain and wavelet-domain, and Boost algorithm trains a model to discriminate fall and other actions, such as, sit, stand and squat. The experimental results show that the proposed method can identify falls well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信