基于PolSAR数据估计油菜生物物理参数的多输出回归

Z. M. Sahin, E. Erten, Gülsen Taskin Kaya
{"title":"基于PolSAR数据估计油菜生物物理参数的多输出回归","authors":"Z. M. Sahin, E. Erten, Gülsen Taskin Kaya","doi":"10.1109/Agro-Geoinformatics.2019.8820646","DOIUrl":null,"url":null,"abstract":"Application of regression models through remote sensing for estimating biophysical parameters of crops is one of the key elements for precision agriculture studies. Numerically, this problem is solved separately for each biophysical parameter such as leaf area index, soil moisture, crop height and etc. However, this approach ignores tight relationship among the biophysical parameters, which is essential for driving estimation performance with a limited number of in-situ measurements. As an alternative strategy, a multi-output regression, which also learns the relationship among biophysical parameters in the regression model, is considered. In order to see how multi-output regression models capture the plausible physical relationship between crops biophysical parameters and polarimetric features, RadarSAT-2 images acquired over agriculture fields in the context of the AgriSAR 2009 campaign were used. Specifically, multioutput Gaussian Processes and multi-output Support Vector Machines, which are two powerful kernel-based methods, are implemented and assessed in the context of accuracy assessment of the biophysical parameter estimation.","PeriodicalId":143731,"journal":{"name":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Output Regressions For Estimating Canola Biophysical Parameters From PolSAR Data\",\"authors\":\"Z. M. Sahin, E. Erten, Gülsen Taskin Kaya\",\"doi\":\"10.1109/Agro-Geoinformatics.2019.8820646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of regression models through remote sensing for estimating biophysical parameters of crops is one of the key elements for precision agriculture studies. Numerically, this problem is solved separately for each biophysical parameter such as leaf area index, soil moisture, crop height and etc. However, this approach ignores tight relationship among the biophysical parameters, which is essential for driving estimation performance with a limited number of in-situ measurements. As an alternative strategy, a multi-output regression, which also learns the relationship among biophysical parameters in the regression model, is considered. In order to see how multi-output regression models capture the plausible physical relationship between crops biophysical parameters and polarimetric features, RadarSAT-2 images acquired over agriculture fields in the context of the AgriSAR 2009 campaign were used. Specifically, multioutput Gaussian Processes and multi-output Support Vector Machines, which are two powerful kernel-based methods, are implemented and assessed in the context of accuracy assessment of the biophysical parameter estimation.\",\"PeriodicalId\":143731,\"journal\":{\"name\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Agro-Geoinformatics.2019.8820646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用遥感回归模型估算作物生物物理参数是精准农业研究的关键内容之一。在数值上,对叶面积指数、土壤湿度、作物高度等各个生物物理参数分别求解。然而,这种方法忽略了生物物理参数之间的紧密关系,这对于在有限的原位测量数量下驱动估计性能至关重要。作为一种替代策略,考虑了多输出回归,该回归也学习了回归模型中生物物理参数之间的关系。为了了解多输出回归模型如何捕捉作物生物物理参数与极化特征之间的合理物理关系,使用了在AgriSAR 2009活动背景下获得的农田RadarSAT-2图像。具体而言,在生物物理参数估计精度评估的背景下,对多输出高斯过程和多输出支持向量机这两种强大的基于核的方法进行了实现和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Output Regressions For Estimating Canola Biophysical Parameters From PolSAR Data
Application of regression models through remote sensing for estimating biophysical parameters of crops is one of the key elements for precision agriculture studies. Numerically, this problem is solved separately for each biophysical parameter such as leaf area index, soil moisture, crop height and etc. However, this approach ignores tight relationship among the biophysical parameters, which is essential for driving estimation performance with a limited number of in-situ measurements. As an alternative strategy, a multi-output regression, which also learns the relationship among biophysical parameters in the regression model, is considered. In order to see how multi-output regression models capture the plausible physical relationship between crops biophysical parameters and polarimetric features, RadarSAT-2 images acquired over agriculture fields in the context of the AgriSAR 2009 campaign were used. Specifically, multioutput Gaussian Processes and multi-output Support Vector Machines, which are two powerful kernel-based methods, are implemented and assessed in the context of accuracy assessment of the biophysical parameter estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信