使用卷积神经网络和FastDTW控制移动机器人运动的Kinect传感器用户活动手势识别

Miguel Pfitscher, D. Welfer, E. Nascimento, M. A. Cuadros, D. Gamarra
{"title":"使用卷积神经网络和FastDTW控制移动机器人运动的Kinect传感器用户活动手势识别","authors":"Miguel Pfitscher, D. Welfer, E. Nascimento, M. A. Cuadros, D. Gamarra","doi":"10.4114/intartif.vol22iss63pp121-134","DOIUrl":null,"url":null,"abstract":"In this paper, we use data from the Microsoft Kinect sensor that processes the captured imageof a person using and extracting the joints information on every frame. Then, we propose the creation ofan image derived from all the sequential frames of a gesture the movement, which facilitates training in aconvolutional neural network. We trained a CNN using two strategies: combined training and individualtraining. The strategies were experimented in the convolutional neural network (CNN) using theMSRC-12 dataset, obtaining an accuracy rate of 86.67% in combined training and 90.78% of accuracyrate in the individual training.. Then, the trained neural network was used to classify data obtained fromKinect with a person, obtaining an accuracy rate of 72.08% in combined training and 81.25% inindividualized training. Finally, we use the system to send commands to a mobile robot in order to controlit.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Article Users Activity Gesture Recognition on Kinect Sensor Using Convolutional Neural Networks and FastDTW for Controlling Movements of a Mobile Robot\",\"authors\":\"Miguel Pfitscher, D. Welfer, E. Nascimento, M. A. Cuadros, D. Gamarra\",\"doi\":\"10.4114/intartif.vol22iss63pp121-134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use data from the Microsoft Kinect sensor that processes the captured imageof a person using and extracting the joints information on every frame. Then, we propose the creation ofan image derived from all the sequential frames of a gesture the movement, which facilitates training in aconvolutional neural network. We trained a CNN using two strategies: combined training and individualtraining. The strategies were experimented in the convolutional neural network (CNN) using theMSRC-12 dataset, obtaining an accuracy rate of 86.67% in combined training and 90.78% of accuracyrate in the individual training.. Then, the trained neural network was used to classify data obtained fromKinect with a person, obtaining an accuracy rate of 72.08% in combined training and 81.25% inindividualized training. Finally, we use the system to send commands to a mobile robot in order to controlit.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol22iss63pp121-134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol22iss63pp121-134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,我们使用来自微软Kinect传感器的数据来处理捕获的人的图像,并提取每一帧的关节信息。然后,我们提出了从动作的所有连续帧中生成图像的方法,这有利于卷积神经网络的训练。我们使用两种策略训练CNN:组合训练和单独训练。使用theMSRC-12数据集在卷积神经网络(CNN)上进行了实验,组合训练的准确率为86.67%,单独训练的准确率为90.78%。然后,使用训练好的神经网络对kinect中获得的数据进行分类,组合训练的准确率为72.08%,单独训练的准确率为81.25%。最后,利用该系统向移动机器人发送指令,实现对其的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Article Users Activity Gesture Recognition on Kinect Sensor Using Convolutional Neural Networks and FastDTW for Controlling Movements of a Mobile Robot
In this paper, we use data from the Microsoft Kinect sensor that processes the captured imageof a person using and extracting the joints information on every frame. Then, we propose the creation ofan image derived from all the sequential frames of a gesture the movement, which facilitates training in aconvolutional neural network. We trained a CNN using two strategies: combined training and individualtraining. The strategies were experimented in the convolutional neural network (CNN) using theMSRC-12 dataset, obtaining an accuracy rate of 86.67% in combined training and 90.78% of accuracyrate in the individual training.. Then, the trained neural network was used to classify data obtained fromKinect with a person, obtaining an accuracy rate of 72.08% in combined training and 81.25% inindividualized training. Finally, we use the system to send commands to a mobile robot in order to controlit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信