Francis Charette Migneault, Eric Granger, F. Mokhayeri
{"title":"使用自适应跟踪器对每个人的单个样本进行视频人脸识别","authors":"Francis Charette Migneault, Eric Granger, F. Mokhayeri","doi":"10.1109/IPTA.2018.8608163","DOIUrl":null,"url":null,"abstract":"Still-to-video face recognition (FR) is an important function in many video surveillance applications, allowing to recognize target individuals of interest appearing over a distributed network of cameras. Systems for still-to-video FR match faces captured in videos under challenging conditions against facial models, often based on a single reference still per individual. To improve robustness to intra-class variations, an adaptive visual tracker is considered for learning of a diversified face trajectory model for each person appearing in the scene. These appearance models are updated along a trajectory, and matched against the reference gallery stills of each individual enrolled to the system. Matching scores per individual are thereby accumulated over successive frames for robust spatio-temporal recognition. In a specific implementation, face trajectory models learned with a STRUCK tracker are compared to reference stills using an ensemble of SVMs per individual that are trained a priori to discriminate target reference faces (in gallery stills) versus non-target faces (in videos from the operational domain). To represent common pose and illumination variations, domain-specific face synthesis is employed to augment the number of reference stills. Experimental results obtained with this implementation on the Chokepoint video dataset indicate that the proposed system can maintain a comparably high level of accuracy versus state-of-the-art systems, yet requires a lower complexity.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Adaptive Trackers for Video Face Recognition from a Single Sample Per Person\",\"authors\":\"Francis Charette Migneault, Eric Granger, F. Mokhayeri\",\"doi\":\"10.1109/IPTA.2018.8608163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Still-to-video face recognition (FR) is an important function in many video surveillance applications, allowing to recognize target individuals of interest appearing over a distributed network of cameras. Systems for still-to-video FR match faces captured in videos under challenging conditions against facial models, often based on a single reference still per individual. To improve robustness to intra-class variations, an adaptive visual tracker is considered for learning of a diversified face trajectory model for each person appearing in the scene. These appearance models are updated along a trajectory, and matched against the reference gallery stills of each individual enrolled to the system. Matching scores per individual are thereby accumulated over successive frames for robust spatio-temporal recognition. In a specific implementation, face trajectory models learned with a STRUCK tracker are compared to reference stills using an ensemble of SVMs per individual that are trained a priori to discriminate target reference faces (in gallery stills) versus non-target faces (in videos from the operational domain). To represent common pose and illumination variations, domain-specific face synthesis is employed to augment the number of reference stills. Experimental results obtained with this implementation on the Chokepoint video dataset indicate that the proposed system can maintain a comparably high level of accuracy versus state-of-the-art systems, yet requires a lower complexity.\",\"PeriodicalId\":272294,\"journal\":{\"name\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2018.8608163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Adaptive Trackers for Video Face Recognition from a Single Sample Per Person
Still-to-video face recognition (FR) is an important function in many video surveillance applications, allowing to recognize target individuals of interest appearing over a distributed network of cameras. Systems for still-to-video FR match faces captured in videos under challenging conditions against facial models, often based on a single reference still per individual. To improve robustness to intra-class variations, an adaptive visual tracker is considered for learning of a diversified face trajectory model for each person appearing in the scene. These appearance models are updated along a trajectory, and matched against the reference gallery stills of each individual enrolled to the system. Matching scores per individual are thereby accumulated over successive frames for robust spatio-temporal recognition. In a specific implementation, face trajectory models learned with a STRUCK tracker are compared to reference stills using an ensemble of SVMs per individual that are trained a priori to discriminate target reference faces (in gallery stills) versus non-target faces (in videos from the operational domain). To represent common pose and illumination variations, domain-specific face synthesis is employed to augment the number of reference stills. Experimental results obtained with this implementation on the Chokepoint video dataset indicate that the proposed system can maintain a comparably high level of accuracy versus state-of-the-art systems, yet requires a lower complexity.