M. S. Jalali, Clifford Ting, Behrooz Abiri, A. Sheikholeslami, M. Kibune, H. Tamura
{"title":"基于3倍盲adc的话单","authors":"M. S. Jalali, Clifford Ting, Behrooz Abiri, A. Sheikholeslami, M. Kibune, H. Tamura","doi":"10.1109/ASSCC.2013.6691054","DOIUrl":null,"url":null,"abstract":"This paper uses a 3-bit ADC to blindly sample the received data at 3× the baud rate to recover the data. By moving from 2× to 3× sampling, we reduce the required ADC resolution from 5-bit to 3-bit, thereby reducing the overall power consumption by a factor of 2. Measurements from our fabricated test chip in Fujitsu's 65nm CMOS show a high frequency jitter tolerance of 0.19UIpp for a 5Gbps PRBS31 with a 16\" FR4 channel.","PeriodicalId":296544,"journal":{"name":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 3x blind ADC-based CDR\",\"authors\":\"M. S. Jalali, Clifford Ting, Behrooz Abiri, A. Sheikholeslami, M. Kibune, H. Tamura\",\"doi\":\"10.1109/ASSCC.2013.6691054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses a 3-bit ADC to blindly sample the received data at 3× the baud rate to recover the data. By moving from 2× to 3× sampling, we reduce the required ADC resolution from 5-bit to 3-bit, thereby reducing the overall power consumption by a factor of 2. Measurements from our fabricated test chip in Fujitsu's 65nm CMOS show a high frequency jitter tolerance of 0.19UIpp for a 5Gbps PRBS31 with a 16\\\" FR4 channel.\",\"PeriodicalId\":296544,\"journal\":{\"name\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASSCC.2013.6691054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Asian Solid-State Circuits Conference (A-SSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASSCC.2013.6691054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper uses a 3-bit ADC to blindly sample the received data at 3× the baud rate to recover the data. By moving from 2× to 3× sampling, we reduce the required ADC resolution from 5-bit to 3-bit, thereby reducing the overall power consumption by a factor of 2. Measurements from our fabricated test chip in Fujitsu's 65nm CMOS show a high frequency jitter tolerance of 0.19UIpp for a 5Gbps PRBS31 with a 16" FR4 channel.