{"title":"进化策略中一种更有效的秩一协方差矩阵更新","authors":"Oswin Krause, C. Igel","doi":"10.1145/2725494.2725496","DOIUrl":null,"url":null,"abstract":"Learning covariance matrices of Gaussian distributions is at the heart of most variable-metric randomized algorithms for continuous optimization. If the search space dimensionality is high, updating the covariance or its factorization is computationally expensive. Therefore, we adopt an algorithm from numerical mathematics for rank-one updates of Cholesky factors. Our methods results in a quadratic time covariance matrix update scheme with minimal memory requirements. The numerically stable algorithm leads to triangular Cholesky factors. Systems of linear equations where the linear transformation is defined by a triangular matrix can be solved in quadratic time. This can be exploited to avoid the additional iterative update of the inverse Cholesky factor required in some covariance matrix adaptation algorithms proposed in the literature. When used together with the (1+1)-CMA-ES and the multi-objective CMA-ES, the new method leads to a memory reduction by a factor of almost four and a faster covariance matrix update. The numerical stability and runtime improvements are demonstrated on a set of benchmark functions.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A More Efficient Rank-one Covariance Matrix Update for Evolution Strategies\",\"authors\":\"Oswin Krause, C. Igel\",\"doi\":\"10.1145/2725494.2725496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning covariance matrices of Gaussian distributions is at the heart of most variable-metric randomized algorithms for continuous optimization. If the search space dimensionality is high, updating the covariance or its factorization is computationally expensive. Therefore, we adopt an algorithm from numerical mathematics for rank-one updates of Cholesky factors. Our methods results in a quadratic time covariance matrix update scheme with minimal memory requirements. The numerically stable algorithm leads to triangular Cholesky factors. Systems of linear equations where the linear transformation is defined by a triangular matrix can be solved in quadratic time. This can be exploited to avoid the additional iterative update of the inverse Cholesky factor required in some covariance matrix adaptation algorithms proposed in the literature. When used together with the (1+1)-CMA-ES and the multi-objective CMA-ES, the new method leads to a memory reduction by a factor of almost four and a faster covariance matrix update. The numerical stability and runtime improvements are demonstrated on a set of benchmark functions.\",\"PeriodicalId\":112331,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2725494.2725496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A More Efficient Rank-one Covariance Matrix Update for Evolution Strategies
Learning covariance matrices of Gaussian distributions is at the heart of most variable-metric randomized algorithms for continuous optimization. If the search space dimensionality is high, updating the covariance or its factorization is computationally expensive. Therefore, we adopt an algorithm from numerical mathematics for rank-one updates of Cholesky factors. Our methods results in a quadratic time covariance matrix update scheme with minimal memory requirements. The numerically stable algorithm leads to triangular Cholesky factors. Systems of linear equations where the linear transformation is defined by a triangular matrix can be solved in quadratic time. This can be exploited to avoid the additional iterative update of the inverse Cholesky factor required in some covariance matrix adaptation algorithms proposed in the literature. When used together with the (1+1)-CMA-ES and the multi-objective CMA-ES, the new method leads to a memory reduction by a factor of almost four and a faster covariance matrix update. The numerical stability and runtime improvements are demonstrated on a set of benchmark functions.