进化策略中一种更有效的秩一协方差矩阵更新

Oswin Krause, C. Igel
{"title":"进化策略中一种更有效的秩一协方差矩阵更新","authors":"Oswin Krause, C. Igel","doi":"10.1145/2725494.2725496","DOIUrl":null,"url":null,"abstract":"Learning covariance matrices of Gaussian distributions is at the heart of most variable-metric randomized algorithms for continuous optimization. If the search space dimensionality is high, updating the covariance or its factorization is computationally expensive. Therefore, we adopt an algorithm from numerical mathematics for rank-one updates of Cholesky factors. Our methods results in a quadratic time covariance matrix update scheme with minimal memory requirements. The numerically stable algorithm leads to triangular Cholesky factors. Systems of linear equations where the linear transformation is defined by a triangular matrix can be solved in quadratic time. This can be exploited to avoid the additional iterative update of the inverse Cholesky factor required in some covariance matrix adaptation algorithms proposed in the literature. When used together with the (1+1)-CMA-ES and the multi-objective CMA-ES, the new method leads to a memory reduction by a factor of almost four and a faster covariance matrix update. The numerical stability and runtime improvements are demonstrated on a set of benchmark functions.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A More Efficient Rank-one Covariance Matrix Update for Evolution Strategies\",\"authors\":\"Oswin Krause, C. Igel\",\"doi\":\"10.1145/2725494.2725496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning covariance matrices of Gaussian distributions is at the heart of most variable-metric randomized algorithms for continuous optimization. If the search space dimensionality is high, updating the covariance or its factorization is computationally expensive. Therefore, we adopt an algorithm from numerical mathematics for rank-one updates of Cholesky factors. Our methods results in a quadratic time covariance matrix update scheme with minimal memory requirements. The numerically stable algorithm leads to triangular Cholesky factors. Systems of linear equations where the linear transformation is defined by a triangular matrix can be solved in quadratic time. This can be exploited to avoid the additional iterative update of the inverse Cholesky factor required in some covariance matrix adaptation algorithms proposed in the literature. When used together with the (1+1)-CMA-ES and the multi-objective CMA-ES, the new method leads to a memory reduction by a factor of almost four and a faster covariance matrix update. The numerical stability and runtime improvements are demonstrated on a set of benchmark functions.\",\"PeriodicalId\":112331,\"journal\":{\"name\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"volume\":\"2015 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2725494.2725496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

学习高斯分布的协方差矩阵是大多数连续优化变度量随机化算法的核心。如果搜索空间维数较高,则更新协方差或其分解的计算开销较大。因此,我们采用一种数值数学算法对Cholesky因子进行秩一更新。我们的方法产生了一个二次时间协方差矩阵更新方案,具有最小的内存需求。数值稳定的算法导致三角形的Cholesky因子。线性方程组的线性变换由三角形矩阵定义,可以在二次时间内求解。这可以用来避免文献中提出的一些协方差矩阵自适应算法所需的逆Cholesky因子的额外迭代更新。当与(1+1)-CMA-ES和多目标CMA-ES结合使用时,该方法的内存减少了近4倍,协方差矩阵更新速度更快。在一组基准函数上演示了数值稳定性和运行时的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A More Efficient Rank-one Covariance Matrix Update for Evolution Strategies
Learning covariance matrices of Gaussian distributions is at the heart of most variable-metric randomized algorithms for continuous optimization. If the search space dimensionality is high, updating the covariance or its factorization is computationally expensive. Therefore, we adopt an algorithm from numerical mathematics for rank-one updates of Cholesky factors. Our methods results in a quadratic time covariance matrix update scheme with minimal memory requirements. The numerically stable algorithm leads to triangular Cholesky factors. Systems of linear equations where the linear transformation is defined by a triangular matrix can be solved in quadratic time. This can be exploited to avoid the additional iterative update of the inverse Cholesky factor required in some covariance matrix adaptation algorithms proposed in the literature. When used together with the (1+1)-CMA-ES and the multi-objective CMA-ES, the new method leads to a memory reduction by a factor of almost four and a faster covariance matrix update. The numerical stability and runtime improvements are demonstrated on a set of benchmark functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信