基于TensorFlow的DNA序列错误校正

Hassanin M. Al-Barhamtoshy, R. Younis
{"title":"基于TensorFlow的DNA序列错误校正","authors":"Hassanin M. Al-Barhamtoshy, R. Younis","doi":"10.1109/ACIT50332.2020.9300094","DOIUrl":null,"url":null,"abstract":"The study aims to use artificial intelligent model to accelerate multi-disciplinary sciences such as biology and physics in scientific discoveries to predict protein structure based on its genetic sequences. This paper presents an intelligent model to correct error sequences of the DNA. Therefore, dataset in genome structure will be used to predict error corrections in DNA sequences of proteins. Accordingly, Nucleus library and TensorFlow are integrated and used for these corrections. To correct sequence errors of DNA, three types of errors: insert spurious base, delete of base, and substitute one base by another. The paper will implement a computational deep neural network based on CNN with TensorFlow to correct such DNA sequence errors.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"339 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DNA Sequence Error Corrections based on TensorFlow\",\"authors\":\"Hassanin M. Al-Barhamtoshy, R. Younis\",\"doi\":\"10.1109/ACIT50332.2020.9300094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study aims to use artificial intelligent model to accelerate multi-disciplinary sciences such as biology and physics in scientific discoveries to predict protein structure based on its genetic sequences. This paper presents an intelligent model to correct error sequences of the DNA. Therefore, dataset in genome structure will be used to predict error corrections in DNA sequences of proteins. Accordingly, Nucleus library and TensorFlow are integrated and used for these corrections. To correct sequence errors of DNA, three types of errors: insert spurious base, delete of base, and substitute one base by another. The paper will implement a computational deep neural network based on CNN with TensorFlow to correct such DNA sequence errors.\",\"PeriodicalId\":193891,\"journal\":{\"name\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"volume\":\"339 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 21st International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIT50332.2020.9300094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该研究的目的是利用人工智能模型加速生物学和物理学等多学科科学的科学发现,以基因序列为基础预测蛋白质结构。提出了一种DNA错误序列修正的智能模型。因此,基因组结构数据集将用于预测蛋白质DNA序列的错误修正。因此,Nucleus库和TensorFlow被集成并用于这些校正。为了纠正DNA序列错误,有三种类型的错误:插入假碱基、删除碱基和用一个碱基代替另一个碱基。本文将利用TensorFlow实现一个基于CNN的计算深度神经网络来纠正这类DNA序列错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DNA Sequence Error Corrections based on TensorFlow
The study aims to use artificial intelligent model to accelerate multi-disciplinary sciences such as biology and physics in scientific discoveries to predict protein structure based on its genetic sequences. This paper presents an intelligent model to correct error sequences of the DNA. Therefore, dataset in genome structure will be used to predict error corrections in DNA sequences of proteins. Accordingly, Nucleus library and TensorFlow are integrated and used for these corrections. To correct sequence errors of DNA, three types of errors: insert spurious base, delete of base, and substitute one base by another. The paper will implement a computational deep neural network based on CNN with TensorFlow to correct such DNA sequence errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信