基于相似度的模糊数据库可扩展性评价中非原子分类属性解释的启发式算法

M. S. Hossain, R. Angryk
{"title":"基于相似度的模糊数据库可扩展性评价中非原子分类属性解释的启发式算法","authors":"M. S. Hossain, R. Angryk","doi":"10.1109/NAFIPS.2007.383843","DOIUrl":null,"url":null,"abstract":"In this work we are analyzing scalability of the heuristic algorithm we used in the past [1-4] to discover knowledge from multi-valued symbolic attributes in fuzzy databases. The non-atomic descriptors, characterizing a single attribute of a database record, are commonly used in fuzzy databases to reflect uncertainty about the recorded observation. In this paper, we present implementation details and scalability tests of the algorithm, which we developed to precisely interpret such non-atomic values and to transfer (i.e. de fuzzify) the fuzzy tuples to the forms acceptable for many regular (i.e. atomic values based) data mining algorithms. Important advantages of our approach are: (1) its linear scalability, and (2) its unique capability of incorporating background knowledge, implicitly stored in the fuzzy database models in the form of fuzzy similarity hierarchy, into the interpretation/defuzzification process.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic Algorithm for Interpretation of Non-Atomic Categorical Attributes in Similarity-based Fuzzy Databases Scalability Evaluation\",\"authors\":\"M. S. Hossain, R. Angryk\",\"doi\":\"10.1109/NAFIPS.2007.383843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we are analyzing scalability of the heuristic algorithm we used in the past [1-4] to discover knowledge from multi-valued symbolic attributes in fuzzy databases. The non-atomic descriptors, characterizing a single attribute of a database record, are commonly used in fuzzy databases to reflect uncertainty about the recorded observation. In this paper, we present implementation details and scalability tests of the algorithm, which we developed to precisely interpret such non-atomic values and to transfer (i.e. de fuzzify) the fuzzy tuples to the forms acceptable for many regular (i.e. atomic values based) data mining algorithms. Important advantages of our approach are: (1) its linear scalability, and (2) its unique capability of incorporating background knowledge, implicitly stored in the fuzzy database models in the form of fuzzy similarity hierarchy, into the interpretation/defuzzification process.\",\"PeriodicalId\":292853,\"journal\":{\"name\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2007.383843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们正在分析过去[1-4]用于从模糊数据库中的多值符号属性中发现知识的启发式算法的可扩展性。描述数据库记录的单个属性的非原子描述符通常用于模糊数据库中,以反映记录观察的不确定性。在本文中,我们给出了算法的实现细节和可扩展性测试,我们开发了该算法来精确地解释这些非原子值,并将模糊元组转换(即去模糊化)为许多常规(即基于原子值)数据挖掘算法可接受的形式。该方法的重要优点是:(1)其线性可扩展性;(2)其独特的将背景知识(以模糊相似层次的形式隐式存储在模糊数据库模型中)纳入解释/去模糊化过程的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heuristic Algorithm for Interpretation of Non-Atomic Categorical Attributes in Similarity-based Fuzzy Databases Scalability Evaluation
In this work we are analyzing scalability of the heuristic algorithm we used in the past [1-4] to discover knowledge from multi-valued symbolic attributes in fuzzy databases. The non-atomic descriptors, characterizing a single attribute of a database record, are commonly used in fuzzy databases to reflect uncertainty about the recorded observation. In this paper, we present implementation details and scalability tests of the algorithm, which we developed to precisely interpret such non-atomic values and to transfer (i.e. de fuzzify) the fuzzy tuples to the forms acceptable for many regular (i.e. atomic values based) data mining algorithms. Important advantages of our approach are: (1) its linear scalability, and (2) its unique capability of incorporating background knowledge, implicitly stored in the fuzzy database models in the form of fuzzy similarity hierarchy, into the interpretation/defuzzification process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信