{"title":"基于相似度的模糊数据库可扩展性评价中非原子分类属性解释的启发式算法","authors":"M. S. Hossain, R. Angryk","doi":"10.1109/NAFIPS.2007.383843","DOIUrl":null,"url":null,"abstract":"In this work we are analyzing scalability of the heuristic algorithm we used in the past [1-4] to discover knowledge from multi-valued symbolic attributes in fuzzy databases. The non-atomic descriptors, characterizing a single attribute of a database record, are commonly used in fuzzy databases to reflect uncertainty about the recorded observation. In this paper, we present implementation details and scalability tests of the algorithm, which we developed to precisely interpret such non-atomic values and to transfer (i.e. de fuzzify) the fuzzy tuples to the forms acceptable for many regular (i.e. atomic values based) data mining algorithms. Important advantages of our approach are: (1) its linear scalability, and (2) its unique capability of incorporating background knowledge, implicitly stored in the fuzzy database models in the form of fuzzy similarity hierarchy, into the interpretation/defuzzification process.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heuristic Algorithm for Interpretation of Non-Atomic Categorical Attributes in Similarity-based Fuzzy Databases Scalability Evaluation\",\"authors\":\"M. S. Hossain, R. Angryk\",\"doi\":\"10.1109/NAFIPS.2007.383843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we are analyzing scalability of the heuristic algorithm we used in the past [1-4] to discover knowledge from multi-valued symbolic attributes in fuzzy databases. The non-atomic descriptors, characterizing a single attribute of a database record, are commonly used in fuzzy databases to reflect uncertainty about the recorded observation. In this paper, we present implementation details and scalability tests of the algorithm, which we developed to precisely interpret such non-atomic values and to transfer (i.e. de fuzzify) the fuzzy tuples to the forms acceptable for many regular (i.e. atomic values based) data mining algorithms. Important advantages of our approach are: (1) its linear scalability, and (2) its unique capability of incorporating background knowledge, implicitly stored in the fuzzy database models in the form of fuzzy similarity hierarchy, into the interpretation/defuzzification process.\",\"PeriodicalId\":292853,\"journal\":{\"name\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2007.383843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heuristic Algorithm for Interpretation of Non-Atomic Categorical Attributes in Similarity-based Fuzzy Databases Scalability Evaluation
In this work we are analyzing scalability of the heuristic algorithm we used in the past [1-4] to discover knowledge from multi-valued symbolic attributes in fuzzy databases. The non-atomic descriptors, characterizing a single attribute of a database record, are commonly used in fuzzy databases to reflect uncertainty about the recorded observation. In this paper, we present implementation details and scalability tests of the algorithm, which we developed to precisely interpret such non-atomic values and to transfer (i.e. de fuzzify) the fuzzy tuples to the forms acceptable for many regular (i.e. atomic values based) data mining algorithms. Important advantages of our approach are: (1) its linear scalability, and (2) its unique capability of incorporating background knowledge, implicitly stored in the fuzzy database models in the form of fuzzy similarity hierarchy, into the interpretation/defuzzification process.