基于蚁群优化选择特征的人脸识别系统

H. Kanan, K. Faez, Mehdi Hosseinzadeh Aghdam
{"title":"基于蚁群优化选择特征的人脸识别系统","authors":"H. Kanan, K. Faez, Mehdi Hosseinzadeh Aghdam","doi":"10.1109/CISDA.2007.368135","DOIUrl":null,"url":null,"abstract":"Feature selection (FS) is a most important step which can affect the performance of pattern recognition system. This paper presents a novel feature selection method that is based on ant colony optimization (ACO). ACO algorithm is inspired of ant's social behavior in their search for the shortest paths to food sources. In the proposed algorithm, classifier performance and the length of selected feature vector are adopted as heuristic information for ACO. So, we can select the optimal feature subset without the priori knowledge of features. Simulation results on face recognition system and ORL database show the superiority of the proposed algorithm","PeriodicalId":403553,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Face Recognition System Using Ant Colony Optimization-Based Selected Features\",\"authors\":\"H. Kanan, K. Faez, Mehdi Hosseinzadeh Aghdam\",\"doi\":\"10.1109/CISDA.2007.368135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection (FS) is a most important step which can affect the performance of pattern recognition system. This paper presents a novel feature selection method that is based on ant colony optimization (ACO). ACO algorithm is inspired of ant's social behavior in their search for the shortest paths to food sources. In the proposed algorithm, classifier performance and the length of selected feature vector are adopted as heuristic information for ACO. So, we can select the optimal feature subset without the priori knowledge of features. Simulation results on face recognition system and ORL database show the superiority of the proposed algorithm\",\"PeriodicalId\":403553,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISDA.2007.368135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2007.368135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

特征选择是影响模式识别系统性能的重要步骤。提出了一种新的基于蚁群优化的特征选择方法。蚁群算法的灵感来源于蚂蚁寻找最短路径到食物源的社会行为。该算法采用分类器性能和所选特征向量长度作为蚁群算法的启发式信息。因此,我们可以在不需要先验特征知识的情况下选择最优的特征子集。人脸识别系统和ORL数据库的仿真结果表明了该算法的优越性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition System Using Ant Colony Optimization-Based Selected Features
Feature selection (FS) is a most important step which can affect the performance of pattern recognition system. This paper presents a novel feature selection method that is based on ant colony optimization (ACO). ACO algorithm is inspired of ant's social behavior in their search for the shortest paths to food sources. In the proposed algorithm, classifier performance and the length of selected feature vector are adopted as heuristic information for ACO. So, we can select the optimal feature subset without the priori knowledge of features. Simulation results on face recognition system and ORL database show the superiority of the proposed algorithm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信