捕捉堕落天使(和其他昂贵的信用事件)

L. Goldberg, A. Zapp
{"title":"捕捉堕落天使(和其他昂贵的信用事件)","authors":"L. Goldberg, A. Zapp","doi":"10.2139/ssrn.822888","DOIUrl":null,"url":null,"abstract":"We examine the efficacy of the I-squared incomplete information credit model in a broad context that is relevant to fund and asset managers. Using a rigorous statistical analysis, we show that I-squared is a powerful forecaster of the following events: - Rating agency downgrades - Investment grade to high yield downgrades - High yield defaults These statistical results translate directly into useful portfolio construction techniques. For example, we show that the number of high-yield defaults in a portfolio can be reduced dramatically by excluding a very small number of names.","PeriodicalId":335960,"journal":{"name":"MSCI Research Paper Series","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catching Fallen Angels (and Other Expensive Credit Events)\",\"authors\":\"L. Goldberg, A. Zapp\",\"doi\":\"10.2139/ssrn.822888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the efficacy of the I-squared incomplete information credit model in a broad context that is relevant to fund and asset managers. Using a rigorous statistical analysis, we show that I-squared is a powerful forecaster of the following events: - Rating agency downgrades - Investment grade to high yield downgrades - High yield defaults These statistical results translate directly into useful portfolio construction techniques. For example, we show that the number of high-yield defaults in a portfolio can be reduced dramatically by excluding a very small number of names.\",\"PeriodicalId\":335960,\"journal\":{\"name\":\"MSCI Research Paper Series\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MSCI Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.822888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MSCI Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.822888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在与基金和资产管理公司相关的广泛背景下检验了i平方不完全信息信用模型的有效性。通过严格的统计分析,我们发现i平方是以下事件的强大预测器:-评级机构降级-投资等级降至高收益-高收益违约这些统计结果直接转化为有用的投资组合构建技术。例如,我们表明,通过排除非常少量的名称,可以显著减少投资组合中高收益违约的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Catching Fallen Angels (and Other Expensive Credit Events)
We examine the efficacy of the I-squared incomplete information credit model in a broad context that is relevant to fund and asset managers. Using a rigorous statistical analysis, we show that I-squared is a powerful forecaster of the following events: - Rating agency downgrades - Investment grade to high yield downgrades - High yield defaults These statistical results translate directly into useful portfolio construction techniques. For example, we show that the number of high-yield defaults in a portfolio can be reduced dramatically by excluding a very small number of names.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信