{"title":"基于词相关矩阵的话题模型的微博热点话题检测","authors":"Huifang Ma, Yuexin Sun, Meihuizi Jia, Zhichang Zhang","doi":"10.1109/ICMLC.2014.7009104","DOIUrl":null,"url":null,"abstract":"In order to face the challenges of feature sparsity of short text messages for microblog hot topic detection, in this paper, we first explore the relation between terms, and then build term correlation matrix which is much denser than term-document matrix. Symmetric non-negative matrix factorization (SNMF) on term correlation matrix is applied to obtain term-topic matrix. Finally, we formulated the topic learning problem as probabilistic Latent semantic analysis (pLSA) on term-topic matrix. Besides, this paper also presents the definition of heat and mechanism of sorting the topics. Experiments show that our method can effectively cluster topics and be applied to microblog hot topic detection.","PeriodicalId":335296,"journal":{"name":"2014 International Conference on Machine Learning and Cybernetics","volume":"267 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Microblog hot topic detection based on topic model using term correlation matrix\",\"authors\":\"Huifang Ma, Yuexin Sun, Meihuizi Jia, Zhichang Zhang\",\"doi\":\"10.1109/ICMLC.2014.7009104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to face the challenges of feature sparsity of short text messages for microblog hot topic detection, in this paper, we first explore the relation between terms, and then build term correlation matrix which is much denser than term-document matrix. Symmetric non-negative matrix factorization (SNMF) on term correlation matrix is applied to obtain term-topic matrix. Finally, we formulated the topic learning problem as probabilistic Latent semantic analysis (pLSA) on term-topic matrix. Besides, this paper also presents the definition of heat and mechanism of sorting the topics. Experiments show that our method can effectively cluster topics and be applied to microblog hot topic detection.\",\"PeriodicalId\":335296,\"journal\":{\"name\":\"2014 International Conference on Machine Learning and Cybernetics\",\"volume\":\"267 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2014.7009104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2014.7009104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microblog hot topic detection based on topic model using term correlation matrix
In order to face the challenges of feature sparsity of short text messages for microblog hot topic detection, in this paper, we first explore the relation between terms, and then build term correlation matrix which is much denser than term-document matrix. Symmetric non-negative matrix factorization (SNMF) on term correlation matrix is applied to obtain term-topic matrix. Finally, we formulated the topic learning problem as probabilistic Latent semantic analysis (pLSA) on term-topic matrix. Besides, this paper also presents the definition of heat and mechanism of sorting the topics. Experiments show that our method can effectively cluster topics and be applied to microblog hot topic detection.