基于惯性传感器数据的人体及类人跌倒预防在线稳定性估计

L. Steffan, Lukas Kaul, T. Asfour
{"title":"基于惯性传感器数据的人体及类人跌倒预防在线稳定性估计","authors":"L. Steffan, Lukas Kaul, T. Asfour","doi":"10.1109/HUMANOIDS.2017.8239553","DOIUrl":null,"url":null,"abstract":"Distinguishing between dynamically stable and unstable body poses during the execution of whole-body motions is of equal importance for humanoid robots and humans assisted by robotic exoskeletons. In this work, we present a study for developing a real-time system for detecting dynamic instability based on a small number of body-mounted inertial measurement units (IMUs). To this end, we systematically evaluate different online capable classifiers, operating on the data of 1 to 6 body mounted sensors, trained on a dataset of 50 disturbed motions with nearly 30,000 motion frames recorded at 100 Hz. In contrast to the majority of related studies, our system does not make use of thresholding certain sensor values but instead uses machine learning techniques to detect characteristics and patterns of features of unstable movements. We show that the right combination of classification method and sensor placement on the human body leads to very good detection results with only 3 sensors.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Online stability estimation based on inertial sensor data for human and humanoid fall prevention\",\"authors\":\"L. Steffan, Lukas Kaul, T. Asfour\",\"doi\":\"10.1109/HUMANOIDS.2017.8239553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distinguishing between dynamically stable and unstable body poses during the execution of whole-body motions is of equal importance for humanoid robots and humans assisted by robotic exoskeletons. In this work, we present a study for developing a real-time system for detecting dynamic instability based on a small number of body-mounted inertial measurement units (IMUs). To this end, we systematically evaluate different online capable classifiers, operating on the data of 1 to 6 body mounted sensors, trained on a dataset of 50 disturbed motions with nearly 30,000 motion frames recorded at 100 Hz. In contrast to the majority of related studies, our system does not make use of thresholding certain sensor values but instead uses machine learning techniques to detect characteristics and patterns of features of unstable movements. We show that the right combination of classification method and sensor placement on the human body leads to very good detection results with only 3 sensors.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8239553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8239553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在执行全身运动时,区分动态稳定和不稳定的身体姿势对人形机器人和由机器人外骨骼辅助的人类同样重要。在这项工作中,我们提出了一项基于少量体载惯性测量单元(imu)开发动态不稳定性实时检测系统的研究。为此,我们系统地评估了不同的在线分类器,这些分类器在1到6个身体安装传感器的数据上运行,在50个干扰运动的数据集上训练,在100 Hz下记录了近30,000个运动帧。与大多数相关研究相反,我们的系统没有使用阈值来确定某些传感器值,而是使用机器学习技术来检测不稳定运动的特征和模式。我们表明,正确结合分类方法和传感器在人体上的放置,只需要3个传感器就可以获得非常好的检测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online stability estimation based on inertial sensor data for human and humanoid fall prevention
Distinguishing between dynamically stable and unstable body poses during the execution of whole-body motions is of equal importance for humanoid robots and humans assisted by robotic exoskeletons. In this work, we present a study for developing a real-time system for detecting dynamic instability based on a small number of body-mounted inertial measurement units (IMUs). To this end, we systematically evaluate different online capable classifiers, operating on the data of 1 to 6 body mounted sensors, trained on a dataset of 50 disturbed motions with nearly 30,000 motion frames recorded at 100 Hz. In contrast to the majority of related studies, our system does not make use of thresholding certain sensor values but instead uses machine learning techniques to detect characteristics and patterns of features of unstable movements. We show that the right combination of classification method and sensor placement on the human body leads to very good detection results with only 3 sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信