使用遗传算法学习相似度的特征权重

N. Ishii, Yong Wang
{"title":"使用遗传算法学习相似度的特征权重","authors":"N. Ishii, Yong Wang","doi":"10.1109/IJSIS.1998.685412","DOIUrl":null,"url":null,"abstract":"This paper presents a GA-based method for learning feature weights in a similarity function from similarity information. The similarity information can be divided into two kinds: one is called qualitative similarity information which represents the similarities between cases; and the other is called relative similarity information which represents the relation between similarities of two case pairs both including a same case. We apply genetic algorithms to learn feature weights from these similarity information. The proposed genetic algorithms are applicable to both linear and nonlinear similarity functions. Our experiments show the learning results are better even if the given similarity information includes errors.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Learning feature weights for similarity using genetic algorithms\",\"authors\":\"N. Ishii, Yong Wang\",\"doi\":\"10.1109/IJSIS.1998.685412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a GA-based method for learning feature weights in a similarity function from similarity information. The similarity information can be divided into two kinds: one is called qualitative similarity information which represents the similarities between cases; and the other is called relative similarity information which represents the relation between similarities of two case pairs both including a same case. We apply genetic algorithms to learn feature weights from these similarity information. The proposed genetic algorithms are applicable to both linear and nonlinear similarity functions. Our experiments show the learning results are better even if the given similarity information includes errors.\",\"PeriodicalId\":289764,\"journal\":{\"name\":\"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJSIS.1998.685412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于遗传算法的相似性函数特征权值学习方法。相似度信息可分为两类:一类称为定性相似度信息,表示案例之间的相似度;另一种称为相对相似度信息,它表示包含同一情况的两个情况对的相似度之间的关系。我们利用遗传算法从这些相似度信息中学习特征权重。所提出的遗传算法既适用于线性相似函数,也适用于非线性相似函数。我们的实验表明,即使给定的相似度信息包含错误,学习结果也会更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning feature weights for similarity using genetic algorithms
This paper presents a GA-based method for learning feature weights in a similarity function from similarity information. The similarity information can be divided into two kinds: one is called qualitative similarity information which represents the similarities between cases; and the other is called relative similarity information which represents the relation between similarities of two case pairs both including a same case. We apply genetic algorithms to learn feature weights from these similarity information. The proposed genetic algorithms are applicable to both linear and nonlinear similarity functions. Our experiments show the learning results are better even if the given similarity information includes errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信