Guanbo Min, G. Khandelwal, A. Dahiya, D. Mulvihill, R. Dahiya
{"title":"纺织摩擦纳米发电机作为自供电可穿戴温度传感器","authors":"Guanbo Min, G. Khandelwal, A. Dahiya, D. Mulvihill, R. Dahiya","doi":"10.1109/fleps53764.2022.9781506","DOIUrl":null,"url":null,"abstract":"Efficient harvesting of ubiquitous ambient mechanical energy such as body movements, vibrations etc. using nanogenerators (NGs) have attracted considerable interest for the development of energy autonomous electronics. Herein, we present a high-performance textile triboelectric nanogenerators (T-TENGs) in fiber form factor using a Polytetrafluoroethylene (PTFE) film in contact with a Nylon based counter-surface in either nanofiber mat or fabric form (both fixed to conductive fabric electrodes). T-TENG performance is enhanced by performing Argon plasma treatment on the PTFE film. The plasma treated devices show increase in output voltage by a factor of 7.6, while short circuit current increased by a factor of 11.6 (compared to pristine non-plasma treated devices). We also show that the fabricated T-TENG can be used as a self-powered temperature sensor within the 25-90°C range. TENG voltage decreased linearly with increasing temperature exhibiting a sensitivity of -0.85/°C. To the best of our knowledge, this is the first demonstration of a T-TENG based self-powered temperature sensor. These results show the potential of T-TENGs for several applications such as detecting temperature in the human body and in self-powered e-Skin for the gloves of humanoid robots etc.","PeriodicalId":221424,"journal":{"name":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Textile Triboelectric Nanogenerators as Self Powered Wearable Temperature Sensors\",\"authors\":\"Guanbo Min, G. Khandelwal, A. Dahiya, D. Mulvihill, R. Dahiya\",\"doi\":\"10.1109/fleps53764.2022.9781506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient harvesting of ubiquitous ambient mechanical energy such as body movements, vibrations etc. using nanogenerators (NGs) have attracted considerable interest for the development of energy autonomous electronics. Herein, we present a high-performance textile triboelectric nanogenerators (T-TENGs) in fiber form factor using a Polytetrafluoroethylene (PTFE) film in contact with a Nylon based counter-surface in either nanofiber mat or fabric form (both fixed to conductive fabric electrodes). T-TENG performance is enhanced by performing Argon plasma treatment on the PTFE film. The plasma treated devices show increase in output voltage by a factor of 7.6, while short circuit current increased by a factor of 11.6 (compared to pristine non-plasma treated devices). We also show that the fabricated T-TENG can be used as a self-powered temperature sensor within the 25-90°C range. TENG voltage decreased linearly with increasing temperature exhibiting a sensitivity of -0.85/°C. To the best of our knowledge, this is the first demonstration of a T-TENG based self-powered temperature sensor. These results show the potential of T-TENGs for several applications such as detecting temperature in the human body and in self-powered e-Skin for the gloves of humanoid robots etc.\",\"PeriodicalId\":221424,\"journal\":{\"name\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/fleps53764.2022.9781506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/fleps53764.2022.9781506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Textile Triboelectric Nanogenerators as Self Powered Wearable Temperature Sensors
Efficient harvesting of ubiquitous ambient mechanical energy such as body movements, vibrations etc. using nanogenerators (NGs) have attracted considerable interest for the development of energy autonomous electronics. Herein, we present a high-performance textile triboelectric nanogenerators (T-TENGs) in fiber form factor using a Polytetrafluoroethylene (PTFE) film in contact with a Nylon based counter-surface in either nanofiber mat or fabric form (both fixed to conductive fabric electrodes). T-TENG performance is enhanced by performing Argon plasma treatment on the PTFE film. The plasma treated devices show increase in output voltage by a factor of 7.6, while short circuit current increased by a factor of 11.6 (compared to pristine non-plasma treated devices). We also show that the fabricated T-TENG can be used as a self-powered temperature sensor within the 25-90°C range. TENG voltage decreased linearly with increasing temperature exhibiting a sensitivity of -0.85/°C. To the best of our knowledge, this is the first demonstration of a T-TENG based self-powered temperature sensor. These results show the potential of T-TENGs for several applications such as detecting temperature in the human body and in self-powered e-Skin for the gloves of humanoid robots etc.