离散群的C*代数

G. Pisier
{"title":"离散群的C*代数","authors":"G. Pisier","doi":"10.1017/9781108782081.004","DOIUrl":null,"url":null,"abstract":"We first recall some classical notation from noncommutative Abstract Harmonic Analysis on an arbitrary discrete group G. We denote by e (and sometimes by eG) the unit element. Let π :G → B(H) be a unitary representation of G. We denote by C∗ π (G) the C∗-algebra generated by the range of π . Equivalently, C∗ π (G) is the closed linear span of π(G). In particular, this applies to the so-called universal representation of G, a notion that we now recall. Let (πj )j∈I be a family of unitary representations of G, say πj :G→ B(Hj ) in which every equivalence class of a cyclic unitary representation ofG has an equivalent copy. Now one can define the “universal” representation UG :G→ B(H) of G by setting UG = ⊕j∈I πj on H = ⊕j∈IHj .","PeriodicalId":245546,"journal":{"name":"Tensor Products of <I>C</I>*-Algebras and Operator Spaces","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"C*-algebras of discrete groups\",\"authors\":\"G. Pisier\",\"doi\":\"10.1017/9781108782081.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first recall some classical notation from noncommutative Abstract Harmonic Analysis on an arbitrary discrete group G. We denote by e (and sometimes by eG) the unit element. Let π :G → B(H) be a unitary representation of G. We denote by C∗ π (G) the C∗-algebra generated by the range of π . Equivalently, C∗ π (G) is the closed linear span of π(G). In particular, this applies to the so-called universal representation of G, a notion that we now recall. Let (πj )j∈I be a family of unitary representations of G, say πj :G→ B(Hj ) in which every equivalence class of a cyclic unitary representation ofG has an equivalent copy. Now one can define the “universal” representation UG :G→ B(H) of G by setting UG = ⊕j∈I πj on H = ⊕j∈IHj .\",\"PeriodicalId\":245546,\"journal\":{\"name\":\"Tensor Products of <I>C</I>*-Algebras and Operator Spaces\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tensor Products of <I>C</I>*-Algebras and Operator Spaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108782081.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tensor Products of <I>C</I>*-Algebras and Operator Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108782081.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们首先回顾了任意离散群g上非交换抽象调和分析中的一些经典符号,我们用e(有时用eG)表示单位元素。设π:G→B(H)是G的酉表示,用C * π (G)表示由π的值域生成的C *代数。同样地,C * π(G)是π(G)的闭线性张成空间。特别地,这适用于所谓的G的全称表示,我们现在回想一下这个概念。设(πj)j∈I是G的酉表示的一族,设πj:G→B(Hj),其中G的循环酉表示的每一个等价类都有一个等价副本。现在我们可以通过设UG =⊕j∈I πj在H =⊕j∈IHj上定义G的“全称”表示UG:G→B(H)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
C*-algebras of discrete groups
We first recall some classical notation from noncommutative Abstract Harmonic Analysis on an arbitrary discrete group G. We denote by e (and sometimes by eG) the unit element. Let π :G → B(H) be a unitary representation of G. We denote by C∗ π (G) the C∗-algebra generated by the range of π . Equivalently, C∗ π (G) is the closed linear span of π(G). In particular, this applies to the so-called universal representation of G, a notion that we now recall. Let (πj )j∈I be a family of unitary representations of G, say πj :G→ B(Hj ) in which every equivalence class of a cyclic unitary representation ofG has an equivalent copy. Now one can define the “universal” representation UG :G→ B(H) of G by setting UG = ⊕j∈I πj on H = ⊕j∈IHj .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信