ω-有理函数的两个有效性质

O. Finkel
{"title":"ω-有理函数的两个有效性质","authors":"O. Finkel","doi":"10.1142/s0129054121500283","DOIUrl":null,"url":null,"abstract":"We prove two new effective properties of rational functions over infinite words which are realized by finite state Büchi transducers. Firstly, for each such function [Formula: see text], one can construct a deterministic Büchi automaton [Formula: see text] accepting a dense [Formula: see text]-subset of [Formula: see text] such that the restriction of [Formula: see text] to [Formula: see text] is continuous. Secondly, we give a new proof of the decidability of the first Baire class for synchronous [Formula: see text]-rational functions from which we get an extension of this result involving the notion of Wadge classes of regular [Formula: see text]-languages.","PeriodicalId":192109,"journal":{"name":"Int. J. Found. Comput. Sci.","volume":"15 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Effective Properties of ω-Rational Functions\",\"authors\":\"O. Finkel\",\"doi\":\"10.1142/s0129054121500283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove two new effective properties of rational functions over infinite words which are realized by finite state Büchi transducers. Firstly, for each such function [Formula: see text], one can construct a deterministic Büchi automaton [Formula: see text] accepting a dense [Formula: see text]-subset of [Formula: see text] such that the restriction of [Formula: see text] to [Formula: see text] is continuous. Secondly, we give a new proof of the decidability of the first Baire class for synchronous [Formula: see text]-rational functions from which we get an extension of this result involving the notion of Wadge classes of regular [Formula: see text]-languages.\",\"PeriodicalId\":192109,\"journal\":{\"name\":\"Int. J. Found. Comput. Sci.\",\"volume\":\"15 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Found. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054121500283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Found. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054121500283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

证明了无限字上有理函数的两个新的有效性质,这两个性质是用有限态 chi换能器实现的。首先,对于每一个这样的函数[公式:见文],我们可以构造一个确定性的b自动机[公式:见文],它接受[公式:见文]的一个密集的[公式:见文]子集,使得[公式:见文]对[公式:见文]的限制是连续的。其次,我们给出了同步[公式:见文]-有理函数的第一个Baire类的可判定性的新证明,并由此得到了包含正则[公式:见文]-语言的Wadge类概念的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two Effective Properties of ω-Rational Functions
We prove two new effective properties of rational functions over infinite words which are realized by finite state Büchi transducers. Firstly, for each such function [Formula: see text], one can construct a deterministic Büchi automaton [Formula: see text] accepting a dense [Formula: see text]-subset of [Formula: see text] such that the restriction of [Formula: see text] to [Formula: see text] is continuous. Secondly, we give a new proof of the decidability of the first Baire class for synchronous [Formula: see text]-rational functions from which we get an extension of this result involving the notion of Wadge classes of regular [Formula: see text]-languages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信