{"title":"将学生的参与时间与学习设计和学习成绩联系起来","authors":"Quan Nguyen, M. Huptych, B. Rienties","doi":"10.1145/3170358.3170398","DOIUrl":null,"url":null,"abstract":"In recent years, the connection between Learning Design (LD) and Learning Analytics (LA) has been emphasized by many scholars as it could enhance our interpretation of LA findings and translate them to meaningful interventions. Together with numerous conceptual studies, a gradual accumulation of empirical evidence has indicated a strong connection between how instructors design for learning and student behaviour. Nonetheless, students' timing of engagement and its relation to LD and academic performance have received limited attention. Therefore, this study investigates to what extent students' timing of engagement aligned with instructor learning design, and how engagement varied across different levels of performance. The analysis was conducted over 28 weeks using trace data, on 387 students, and replicated over two semesters in 2015 and 2016. Our findings revealed a mismatch between how instructors designed for learning and how students studied in reality. In most weeks, students spent less time studying the assigned materials on the VLE compared to the number of hours recommended by instructors. The timing of engagement also varied, from in advance to catching up patterns. High-performing students spent more time studying in advance, while low-performing students spent a higher proportion of their time on catching-up activities. This study reinforced the importance of pedagogical context to transform analytics into actionable insights.","PeriodicalId":437369,"journal":{"name":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Linking students' timing of engagement to learning design and academic performance\",\"authors\":\"Quan Nguyen, M. Huptych, B. Rienties\",\"doi\":\"10.1145/3170358.3170398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, the connection between Learning Design (LD) and Learning Analytics (LA) has been emphasized by many scholars as it could enhance our interpretation of LA findings and translate them to meaningful interventions. Together with numerous conceptual studies, a gradual accumulation of empirical evidence has indicated a strong connection between how instructors design for learning and student behaviour. Nonetheless, students' timing of engagement and its relation to LD and academic performance have received limited attention. Therefore, this study investigates to what extent students' timing of engagement aligned with instructor learning design, and how engagement varied across different levels of performance. The analysis was conducted over 28 weeks using trace data, on 387 students, and replicated over two semesters in 2015 and 2016. Our findings revealed a mismatch between how instructors designed for learning and how students studied in reality. In most weeks, students spent less time studying the assigned materials on the VLE compared to the number of hours recommended by instructors. The timing of engagement also varied, from in advance to catching up patterns. High-performing students spent more time studying in advance, while low-performing students spent a higher proportion of their time on catching-up activities. This study reinforced the importance of pedagogical context to transform analytics into actionable insights.\",\"PeriodicalId\":437369,\"journal\":{\"name\":\"Proceedings of the 8th International Conference on Learning Analytics and Knowledge\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th International Conference on Learning Analytics and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3170358.3170398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3170358.3170398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linking students' timing of engagement to learning design and academic performance
In recent years, the connection between Learning Design (LD) and Learning Analytics (LA) has been emphasized by many scholars as it could enhance our interpretation of LA findings and translate them to meaningful interventions. Together with numerous conceptual studies, a gradual accumulation of empirical evidence has indicated a strong connection between how instructors design for learning and student behaviour. Nonetheless, students' timing of engagement and its relation to LD and academic performance have received limited attention. Therefore, this study investigates to what extent students' timing of engagement aligned with instructor learning design, and how engagement varied across different levels of performance. The analysis was conducted over 28 weeks using trace data, on 387 students, and replicated over two semesters in 2015 and 2016. Our findings revealed a mismatch between how instructors designed for learning and how students studied in reality. In most weeks, students spent less time studying the assigned materials on the VLE compared to the number of hours recommended by instructors. The timing of engagement also varied, from in advance to catching up patterns. High-performing students spent more time studying in advance, while low-performing students spent a higher proportion of their time on catching-up activities. This study reinforced the importance of pedagogical context to transform analytics into actionable insights.