面向大数据分析应用的模型驱动架构设计方法

C. Castellanos, B. Pérez, D. Correal, Carlos A. Varela
{"title":"面向大数据分析应用的模型驱动架构设计方法","authors":"C. Castellanos, B. Pérez, D. Correal, Carlos A. Varela","doi":"10.1109/ICSA-C50368.2020.00026","DOIUrl":null,"url":null,"abstract":"Big data analytics (BDA) applications use machine learning to extract valuable insights from large, fast, and heterogeneous data sources. The architectural design and evaluation of BDA applications entail new challenges to integrate emerging machine learning algorithms with cutting-edge practices whilst ensuring performance levels even in the presence of large data volume, velocity, and variety (3Vs). This paper presents a design process approach based on the Attribute-Driven Design (ADD) method and Architecture tradeoff analysis method (ATAM) to specify, deploy, and monitor performance metrics in BDA applications supported by domain-specific modeling and DevOps. Our design process starts with the definition of architectural drivers, followed by functional and deployment specification through integrated high-level modeling which enables quality scenarios monitoring. We used two use cases from avionics to evaluate this proposal, and the preliminary results suggest advantages by integrating multiple views, automating deployment and monitoring compared to similar approaches.","PeriodicalId":202587,"journal":{"name":"2020 IEEE International Conference on Software Architecture Companion (ICSA-C)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Model-Driven Architectural Design Method for Big Data Analytics Applications\",\"authors\":\"C. Castellanos, B. Pérez, D. Correal, Carlos A. Varela\",\"doi\":\"10.1109/ICSA-C50368.2020.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data analytics (BDA) applications use machine learning to extract valuable insights from large, fast, and heterogeneous data sources. The architectural design and evaluation of BDA applications entail new challenges to integrate emerging machine learning algorithms with cutting-edge practices whilst ensuring performance levels even in the presence of large data volume, velocity, and variety (3Vs). This paper presents a design process approach based on the Attribute-Driven Design (ADD) method and Architecture tradeoff analysis method (ATAM) to specify, deploy, and monitor performance metrics in BDA applications supported by domain-specific modeling and DevOps. Our design process starts with the definition of architectural drivers, followed by functional and deployment specification through integrated high-level modeling which enables quality scenarios monitoring. We used two use cases from avionics to evaluate this proposal, and the preliminary results suggest advantages by integrating multiple views, automating deployment and monitoring compared to similar approaches.\",\"PeriodicalId\":202587,\"journal\":{\"name\":\"2020 IEEE International Conference on Software Architecture Companion (ICSA-C)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Software Architecture Companion (ICSA-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSA-C50368.2020.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Software Architecture Companion (ICSA-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA-C50368.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

大数据分析(BDA)应用程序使用机器学习从大型、快速和异构数据源中提取有价值的见解。BDA应用程序的架构设计和评估带来了新的挑战,需要将新兴的机器学习算法与尖端实践相结合,同时确保在大数据量、速度和多样性(3v)存在的情况下也能保持性能水平。本文提出了一种基于属性驱动设计(ADD)方法和架构权衡分析方法(ATAM)的设计过程方法,用于指定、部署和监控由领域特定建模和DevOps支持的BDA应用程序中的性能指标。我们的设计过程从架构驱动程序的定义开始,然后是功能和部署规范,通过集成的高级建模来实现高质量的场景监控。我们使用了两个来自航空电子设备的用例来评估这一建议,初步结果表明,与类似方法相比,集成多个视图、自动化部署和监控具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model-Driven Architectural Design Method for Big Data Analytics Applications
Big data analytics (BDA) applications use machine learning to extract valuable insights from large, fast, and heterogeneous data sources. The architectural design and evaluation of BDA applications entail new challenges to integrate emerging machine learning algorithms with cutting-edge practices whilst ensuring performance levels even in the presence of large data volume, velocity, and variety (3Vs). This paper presents a design process approach based on the Attribute-Driven Design (ADD) method and Architecture tradeoff analysis method (ATAM) to specify, deploy, and monitor performance metrics in BDA applications supported by domain-specific modeling and DevOps. Our design process starts with the definition of architectural drivers, followed by functional and deployment specification through integrated high-level modeling which enables quality scenarios monitoring. We used two use cases from avionics to evaluate this proposal, and the preliminary results suggest advantages by integrating multiple views, automating deployment and monitoring compared to similar approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信