{"title":"在线异常检测数据流","authors":"Christian Gruhl, Sven Tomforde","doi":"10.1109/ACSOS-C52956.2021.00046","DOIUrl":null,"url":null,"abstract":"We propose OHODIN an online extension for data streams of the knn-based ODIN anomaly detection approach and presents a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. This article presents the algorithms itself and an experimental evaluation with competing state-of-the-art anomaly detection approaches.","PeriodicalId":268224,"journal":{"name":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","volume":"8 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"OHODIN – Online Anomaly Detection for Data Streams\",\"authors\":\"Christian Gruhl, Sven Tomforde\",\"doi\":\"10.1109/ACSOS-C52956.2021.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose OHODIN an online extension for data streams of the knn-based ODIN anomaly detection approach and presents a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. This article presents the algorithms itself and an experimental evaluation with competing state-of-the-art anomaly detection approaches.\",\"PeriodicalId\":268224,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"volume\":\"8 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSOS-C52956.2021.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS-C52956.2021.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
OHODIN – Online Anomaly Detection for Data Streams
We propose OHODIN an online extension for data streams of the knn-based ODIN anomaly detection approach and presents a detection-threshold heuristic that is based on extreme value theory. In contrast to sophisticated anomaly and novelty detection approaches the decision-making process of ODIN is interpretable by humans, making it interesting for certain applications. This article presents the algorithms itself and an experimental evaluation with competing state-of-the-art anomaly detection approaches.