基于信息集特征的环境智能应用中的文本独立说话人识别

A. Anand, R. D. Labati, M. Hanmandlu, V. Piuri, F. Scotti
{"title":"基于信息集特征的环境智能应用中的文本独立说话人识别","authors":"A. Anand, R. D. Labati, M. Hanmandlu, V. Piuri, F. Scotti","doi":"10.1109/CIVEMSA.2017.7995297","DOIUrl":null,"url":null,"abstract":"Biometric systems are enabling technologies for a wide set of applications in Ambient Intelligence (AmI) environments. In this context, speaker recognition techniques are of paramount importance due to their high user acceptance and low required cooperation. Typical applications of biometric recognition in AmI environments are identification techniques designed to recognize individuals in small datasets. Biometric recognition methods are frequently deployed on embedded hardware and therefore need to be optimized in terms of computational time as well as used memory. This paper presents a text-independent speaker recognition method particularly suitable for identification in AmI environments. The proposed method first computes the Mel Frequency Cepstral Coefficients (MFCC) and then creates Information Set Features (ISF) by applying a fuzzy logic approach. Finally, it estimates the user's identity by using a hierarchical classification technique based on computational intelligence. We evaluated the performance of the speaker recognition method using signals belonging to the NIST-2003 switchboard speaker database. The achieved results showed that the proposed method reduced the size of the template with respect to traditional approaches based on Gaussian Mixture Models (GMM) and achieved better identification accuracy.","PeriodicalId":123360,"journal":{"name":"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Text-independent speaker recognition for Ambient Intelligence applications by using Information Set Features\",\"authors\":\"A. Anand, R. D. Labati, M. Hanmandlu, V. Piuri, F. Scotti\",\"doi\":\"10.1109/CIVEMSA.2017.7995297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric systems are enabling technologies for a wide set of applications in Ambient Intelligence (AmI) environments. In this context, speaker recognition techniques are of paramount importance due to their high user acceptance and low required cooperation. Typical applications of biometric recognition in AmI environments are identification techniques designed to recognize individuals in small datasets. Biometric recognition methods are frequently deployed on embedded hardware and therefore need to be optimized in terms of computational time as well as used memory. This paper presents a text-independent speaker recognition method particularly suitable for identification in AmI environments. The proposed method first computes the Mel Frequency Cepstral Coefficients (MFCC) and then creates Information Set Features (ISF) by applying a fuzzy logic approach. Finally, it estimates the user's identity by using a hierarchical classification technique based on computational intelligence. We evaluated the performance of the speaker recognition method using signals belonging to the NIST-2003 switchboard speaker database. The achieved results showed that the proposed method reduced the size of the template with respect to traditional approaches based on Gaussian Mixture Models (GMM) and achieved better identification accuracy.\",\"PeriodicalId\":123360,\"journal\":{\"name\":\"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIVEMSA.2017.7995297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2017.7995297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

生物识别系统是环境智能(AmI)环境中广泛应用的使能技术。在这种情况下,说话人识别技术因其高用户接受度和低合作要求而至关重要。生物特征识别在人工智能环境中的典型应用是设计用于识别小数据集中个体的识别技术。生物识别方法经常部署在嵌入式硬件上,因此需要在计算时间和使用内存方面进行优化。本文提出了一种与文本无关的说话人识别方法,特别适用于AmI环境下的识别。该方法首先计算Mel的倒频系数(MFCC),然后应用模糊逻辑方法创建信息集特征(ISF)。最后,采用基于计算智能的分层分类技术对用户身份进行估计。我们使用NIST-2003总机扬声器数据库中的信号评估了说话人识别方法的性能。实验结果表明,该方法相对于传统的基于高斯混合模型(GMM)的方法减小了模板的尺寸,获得了更好的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-independent speaker recognition for Ambient Intelligence applications by using Information Set Features
Biometric systems are enabling technologies for a wide set of applications in Ambient Intelligence (AmI) environments. In this context, speaker recognition techniques are of paramount importance due to their high user acceptance and low required cooperation. Typical applications of biometric recognition in AmI environments are identification techniques designed to recognize individuals in small datasets. Biometric recognition methods are frequently deployed on embedded hardware and therefore need to be optimized in terms of computational time as well as used memory. This paper presents a text-independent speaker recognition method particularly suitable for identification in AmI environments. The proposed method first computes the Mel Frequency Cepstral Coefficients (MFCC) and then creates Information Set Features (ISF) by applying a fuzzy logic approach. Finally, it estimates the user's identity by using a hierarchical classification technique based on computational intelligence. We evaluated the performance of the speaker recognition method using signals belonging to the NIST-2003 switchboard speaker database. The achieved results showed that the proposed method reduced the size of the template with respect to traditional approaches based on Gaussian Mixture Models (GMM) and achieved better identification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信