{"title":"用于自适应微波电路的可调谐非互易移相器和自旋涂覆铁氧体","authors":"Karthik Srinivasan, A. El-Ghazaly","doi":"10.1109/IMAS55807.2023.10066899","DOIUrl":null,"url":null,"abstract":"Tunable non-reciprocal components with ferrites that can be integrated using a foundry suitable process are key to achieving low-power adaptive microwave circuits. The current state-of-the-art still relies on electrical tuning or resistive absorbers to facilitate unidirectional propagation. Here, we demonstrate a novel process for spin-coating thick films of ferrites without the complexities of vacuum processes or high-temperature annealing. Composites of yttrium iron garnet (YIG) nanoparticles in a matrix spin-on-glass are spin-coated on silicon substrates, and magnetic properties comparable to bulk YIG are obtained in films exceeding 30 microns. We also propose a design for tunable phase shifter based on periodically serrated coplanar waveguide with a YIG cladding. A non-reciprocal phase difference of 20 - 60 degrees is obtained over a tunable band of 550 MHz between 3.85 - 4.4 GHz from a tuning magnetic field of 8 - 40 kA/m.","PeriodicalId":246624,"journal":{"name":"2023 International Microwave and Antenna Symposium (IMAS)","volume":"103 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable Non-Reciprocal Phase Shifter and Spin-Coated Ferrites for Adaptive Microwave Circuits\",\"authors\":\"Karthik Srinivasan, A. El-Ghazaly\",\"doi\":\"10.1109/IMAS55807.2023.10066899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tunable non-reciprocal components with ferrites that can be integrated using a foundry suitable process are key to achieving low-power adaptive microwave circuits. The current state-of-the-art still relies on electrical tuning or resistive absorbers to facilitate unidirectional propagation. Here, we demonstrate a novel process for spin-coating thick films of ferrites without the complexities of vacuum processes or high-temperature annealing. Composites of yttrium iron garnet (YIG) nanoparticles in a matrix spin-on-glass are spin-coated on silicon substrates, and magnetic properties comparable to bulk YIG are obtained in films exceeding 30 microns. We also propose a design for tunable phase shifter based on periodically serrated coplanar waveguide with a YIG cladding. A non-reciprocal phase difference of 20 - 60 degrees is obtained over a tunable band of 550 MHz between 3.85 - 4.4 GHz from a tuning magnetic field of 8 - 40 kA/m.\",\"PeriodicalId\":246624,\"journal\":{\"name\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"volume\":\"103 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Microwave and Antenna Symposium (IMAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMAS55807.2023.10066899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Microwave and Antenna Symposium (IMAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMAS55807.2023.10066899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tunable Non-Reciprocal Phase Shifter and Spin-Coated Ferrites for Adaptive Microwave Circuits
Tunable non-reciprocal components with ferrites that can be integrated using a foundry suitable process are key to achieving low-power adaptive microwave circuits. The current state-of-the-art still relies on electrical tuning or resistive absorbers to facilitate unidirectional propagation. Here, we demonstrate a novel process for spin-coating thick films of ferrites without the complexities of vacuum processes or high-temperature annealing. Composites of yttrium iron garnet (YIG) nanoparticles in a matrix spin-on-glass are spin-coated on silicon substrates, and magnetic properties comparable to bulk YIG are obtained in films exceeding 30 microns. We also propose a design for tunable phase shifter based on periodically serrated coplanar waveguide with a YIG cladding. A non-reciprocal phase difference of 20 - 60 degrees is obtained over a tunable band of 550 MHz between 3.85 - 4.4 GHz from a tuning magnetic field of 8 - 40 kA/m.