基于最大相关峰度反褶积和改进自相关谱峰图的滚动轴承故障特征提取

Chencheng He, Wenbo Wang
{"title":"基于最大相关峰度反褶积和改进自相关谱峰图的滚动轴承故障特征提取","authors":"Chencheng He, Wenbo Wang","doi":"10.1117/12.2689626","DOIUrl":null,"url":null,"abstract":"In order to further improve the separation and detection accuracy of bearing fault characteristics, A new method for early fault diagnosis of rolling bearings based on Maximum Correlated Kurtosis Deconvolution and autocorrelation kurtograph was proposed. Firstly, the vibration signal of bearing fault is denoised by Maximum Correlated Kurtosis Deconvolution; Then, the improved autocorrelation spectral kurtograph is used to select the optimal frequency center and bandwidth of fault features. According to the optimal frequency center and bandwidth, the band pass filtering is carried out to remove noise and random pulse irrelevant components in the band signal. Finally, the sub-signal after bandpass filtering is analyzed by envelope spectrum, identify fault frequency and realize early fault diagnosis of rolling bearing. In the experiment, different types of bearing fault data verify the effectiveness of the proposed method.","PeriodicalId":118234,"journal":{"name":"4th International Conference on Information Science, Electrical and Automation Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rolling bearing fault feature extraction based on maximum correlated kurtosis deconvolution and improved autocorrelation spectral kurtograph\",\"authors\":\"Chencheng He, Wenbo Wang\",\"doi\":\"10.1117/12.2689626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to further improve the separation and detection accuracy of bearing fault characteristics, A new method for early fault diagnosis of rolling bearings based on Maximum Correlated Kurtosis Deconvolution and autocorrelation kurtograph was proposed. Firstly, the vibration signal of bearing fault is denoised by Maximum Correlated Kurtosis Deconvolution; Then, the improved autocorrelation spectral kurtograph is used to select the optimal frequency center and bandwidth of fault features. According to the optimal frequency center and bandwidth, the band pass filtering is carried out to remove noise and random pulse irrelevant components in the band signal. Finally, the sub-signal after bandpass filtering is analyzed by envelope spectrum, identify fault frequency and realize early fault diagnosis of rolling bearing. In the experiment, different types of bearing fault data verify the effectiveness of the proposed method.\",\"PeriodicalId\":118234,\"journal\":{\"name\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Information Science, Electrical and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2689626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Information Science, Electrical and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2689626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了进一步提高轴承故障特征的分离和检测精度,提出了一种基于最大相关峰度反褶积和自相关峰度图的滚动轴承早期故障诊断新方法。首先,采用最大相关峰度反卷积法对轴承故障振动信号进行降噪;然后,利用改进的自相关谱峭度图选择故障特征的最优频率中心和带宽。根据最优的频率中心和带宽进行带通滤波,去除带信号中的噪声和随机脉冲无关分量。最后对带通滤波后的子信号进行包络谱分析,识别故障频率,实现滚动轴承的早期故障诊断。在实验中,不同类型的轴承故障数据验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rolling bearing fault feature extraction based on maximum correlated kurtosis deconvolution and improved autocorrelation spectral kurtograph
In order to further improve the separation and detection accuracy of bearing fault characteristics, A new method for early fault diagnosis of rolling bearings based on Maximum Correlated Kurtosis Deconvolution and autocorrelation kurtograph was proposed. Firstly, the vibration signal of bearing fault is denoised by Maximum Correlated Kurtosis Deconvolution; Then, the improved autocorrelation spectral kurtograph is used to select the optimal frequency center and bandwidth of fault features. According to the optimal frequency center and bandwidth, the band pass filtering is carried out to remove noise and random pulse irrelevant components in the band signal. Finally, the sub-signal after bandpass filtering is analyzed by envelope spectrum, identify fault frequency and realize early fault diagnosis of rolling bearing. In the experiment, different types of bearing fault data verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信