基于CHROM和LSTM-NN的皮肤视频血压近似

Chayanin Lumyong, Nutcha Yodrabum, K. Winaikosol, Taravichet Titijaroonroj
{"title":"基于CHROM和LSTM-NN的皮肤视频血压近似","authors":"Chayanin Lumyong, Nutcha Yodrabum, K. Winaikosol, Taravichet Titijaroonroj","doi":"10.1109/KST57286.2023.10086816","DOIUrl":null,"url":null,"abstract":"The measurement of blood pressure (BP) is an essential step in clinical practice. It is used to determine the patient’s BP, which reflects the condition of the patient. Recently, there is a solution for extracting, non-invasively and with no contact, a blood pressure indicator from electrical signal like Photoplethysmography (PPG), called remote-Photoplethysmography (rPPG). This rPPG signal can be used to estimate from a video clip several vital physiological indicators for humans, especially, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP). This paper proposed a computer method for blood pressure approximation from an input video. A chrominance method, or CHROM, was used to extract rPPG signal from a given video before forwarding it to estimate SBP and DBP values by LSTM-NN. Afterwards, MAP value was determined from SBP and DBP values by a weighting score technique. Experimental results showed that CHROM achieved the lowest mean absolute error (MAE) at 14.04, 8.37, and 9.78 for the SBP, DBP, and MAP, respectively, when compared among NN, RNN, and GRU.","PeriodicalId":351833,"journal":{"name":"2023 15th International Conference on Knowledge and Smart Technology (KST)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin Video-based Blood Pressure Approximation Using CHROM with LSTM-NN\",\"authors\":\"Chayanin Lumyong, Nutcha Yodrabum, K. Winaikosol, Taravichet Titijaroonroj\",\"doi\":\"10.1109/KST57286.2023.10086816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The measurement of blood pressure (BP) is an essential step in clinical practice. It is used to determine the patient’s BP, which reflects the condition of the patient. Recently, there is a solution for extracting, non-invasively and with no contact, a blood pressure indicator from electrical signal like Photoplethysmography (PPG), called remote-Photoplethysmography (rPPG). This rPPG signal can be used to estimate from a video clip several vital physiological indicators for humans, especially, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP). This paper proposed a computer method for blood pressure approximation from an input video. A chrominance method, or CHROM, was used to extract rPPG signal from a given video before forwarding it to estimate SBP and DBP values by LSTM-NN. Afterwards, MAP value was determined from SBP and DBP values by a weighting score technique. Experimental results showed that CHROM achieved the lowest mean absolute error (MAE) at 14.04, 8.37, and 9.78 for the SBP, DBP, and MAP, respectively, when compared among NN, RNN, and GRU.\",\"PeriodicalId\":351833,\"journal\":{\"name\":\"2023 15th International Conference on Knowledge and Smart Technology (KST)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 15th International Conference on Knowledge and Smart Technology (KST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KST57286.2023.10086816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST57286.2023.10086816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血压(BP)的测量是临床实践中必不可少的步骤。它用于确定患者的血压,反映患者的病情。最近,有一种无创、无接触地从电信号中提取血压指标的解决方案,如光电容积脉搏图(PPG),称为远程光电容积脉搏图(rPPG)。rPPG信号可用于从视频片段中估计人体的几个重要生理指标,特别是收缩压(SBP)、舒张压(DBP)和平均动脉压(MAP)。本文提出了一种基于输入视频的血压近似计算方法。采用色度法(CHROM)从给定视频中提取rPPG信号,然后转发,通过LSTM-NN估计收缩压和DBP值。然后,通过加权评分技术从收缩压和舒张压值确定MAP值。实验结果表明,与神经网络、RNN和GRU相比,CHROM对收缩压、舒张压和MAP的平均绝对误差(MAE)分别为14.04、8.37和9.78。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Skin Video-based Blood Pressure Approximation Using CHROM with LSTM-NN
The measurement of blood pressure (BP) is an essential step in clinical practice. It is used to determine the patient’s BP, which reflects the condition of the patient. Recently, there is a solution for extracting, non-invasively and with no contact, a blood pressure indicator from electrical signal like Photoplethysmography (PPG), called remote-Photoplethysmography (rPPG). This rPPG signal can be used to estimate from a video clip several vital physiological indicators for humans, especially, systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressure (MAP). This paper proposed a computer method for blood pressure approximation from an input video. A chrominance method, or CHROM, was used to extract rPPG signal from a given video before forwarding it to estimate SBP and DBP values by LSTM-NN. Afterwards, MAP value was determined from SBP and DBP values by a weighting score technique. Experimental results showed that CHROM achieved the lowest mean absolute error (MAE) at 14.04, 8.37, and 9.78 for the SBP, DBP, and MAP, respectively, when compared among NN, RNN, and GRU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信