基于永无休止学习的不同语言概念对等自动识别

Silvio C. Marino, E. R. H. Junior
{"title":"基于永无休止学习的不同语言概念对等自动识别","authors":"Silvio C. Marino, E. R. H. Junior","doi":"10.5753/eniac.2018.4412","DOIUrl":null,"url":null,"abstract":"This paper describes the process of automatic identification of concepts in different languages using a base that relies on simple semantic and morphosyntactic characteristics like string similarity, difference in words amount and translation position on dictionary (when exists) and a neural network that has been used as a model of machine learning. All experiments use data that was obtained from a few categories of Read The Web (RTW) project and an endless learning computation system called NELL: Never-Ending Language Learning. The results were compared with dictionary and showed that the introduction of neural network brought a significant gain in the process of equivalence of concepts.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Identification of Equivalence of Concepts in Different Languages for Never-Ending Learning\",\"authors\":\"Silvio C. Marino, E. R. H. Junior\",\"doi\":\"10.5753/eniac.2018.4412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the process of automatic identification of concepts in different languages using a base that relies on simple semantic and morphosyntactic characteristics like string similarity, difference in words amount and translation position on dictionary (when exists) and a neural network that has been used as a model of machine learning. All experiments use data that was obtained from a few categories of Read The Web (RTW) project and an endless learning computation system called NELL: Never-Ending Language Learning. The results were compared with dictionary and showed that the introduction of neural network brought a significant gain in the process of equivalence of concepts.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2018.4412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2018.4412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了不同语言中概念的自动识别过程,使用的基础是简单的语义和形态句法特征,如字符串相似度、词量差异和字典上的翻译位置(如果存在),以及已被用作机器学习模型的神经网络。所有实验使用的数据都是从阅读网络(RTW)项目的几个类别中获得的,以及一个名为NELL的无休止的学习计算系统:永无止境的语言学习。将结果与词典进行了比较,结果表明神经网络的引入在概念等价过程中带来了显著的增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Identification of Equivalence of Concepts in Different Languages for Never-Ending Learning
This paper describes the process of automatic identification of concepts in different languages using a base that relies on simple semantic and morphosyntactic characteristics like string similarity, difference in words amount and translation position on dictionary (when exists) and a neural network that has been used as a model of machine learning. All experiments use data that was obtained from a few categories of Read The Web (RTW) project and an endless learning computation system called NELL: Never-Ending Language Learning. The results were compared with dictionary and showed that the introduction of neural network brought a significant gain in the process of equivalence of concepts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信