MAC协议的公平性:IEEE 1901与802.11

C. Vlachou, J. Herzen, Patrick Thiran
{"title":"MAC协议的公平性:IEEE 1901与802.11","authors":"C. Vlachou, J. Herzen, Patrick Thiran","doi":"10.1109/ISPLC.2013.6525825","DOIUrl":null,"url":null,"abstract":"The MAC layer of the IEEE 1901 standard for power line communications employs a CSMA/CA method similar to, but more complex than, this of IEEE 802.11 for wireless communications. The differences between these protocols raise questions such as which one performs better and under what conditions. We study the fairness of the 1901 MAC protocol in single contention domain networks, where all stations hear each other. We examine fairness at the packet level: a MAC layer protocol is fair if all stations share equitably the medium during a fixed time interval. We focus on short-term fairness, that is, over short time intervals. Short-term fairness directly impacts end-user experience, because unfair protocols are susceptible to introduce substantial packet delays. We evaluate short-term fairness with two metrics: Jain's fairness index and the number of inter-transmissions. We present test-bed results of both protocols and compare them with simulations. Both simulation and test-bed results indicate that 802.11 is fairer in the short-term when the number of stations N is between 2 and 5. However, simulation results reveal that 1901 is fairer in the short-term for N ≥ 15. Importantly, our test-bed measurements indicate that 1901 unfairness can cause significant additional delay when N = 2. Finally, we confirm these results by showing analytically that 1901 is short-term unfair for N = 2.","PeriodicalId":415075,"journal":{"name":"2013 IEEE 17th International Symposium on Power Line Communications and Its Applications","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Fairness of MAC protocols: IEEE 1901 vs. 802.11\",\"authors\":\"C. Vlachou, J. Herzen, Patrick Thiran\",\"doi\":\"10.1109/ISPLC.2013.6525825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MAC layer of the IEEE 1901 standard for power line communications employs a CSMA/CA method similar to, but more complex than, this of IEEE 802.11 for wireless communications. The differences between these protocols raise questions such as which one performs better and under what conditions. We study the fairness of the 1901 MAC protocol in single contention domain networks, where all stations hear each other. We examine fairness at the packet level: a MAC layer protocol is fair if all stations share equitably the medium during a fixed time interval. We focus on short-term fairness, that is, over short time intervals. Short-term fairness directly impacts end-user experience, because unfair protocols are susceptible to introduce substantial packet delays. We evaluate short-term fairness with two metrics: Jain's fairness index and the number of inter-transmissions. We present test-bed results of both protocols and compare them with simulations. Both simulation and test-bed results indicate that 802.11 is fairer in the short-term when the number of stations N is between 2 and 5. However, simulation results reveal that 1901 is fairer in the short-term for N ≥ 15. Importantly, our test-bed measurements indicate that 1901 unfairness can cause significant additional delay when N = 2. Finally, we confirm these results by showing analytically that 1901 is short-term unfair for N = 2.\",\"PeriodicalId\":415075,\"journal\":{\"name\":\"2013 IEEE 17th International Symposium on Power Line Communications and Its Applications\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 17th International Symposium on Power Line Communications and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPLC.2013.6525825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 17th International Symposium on Power Line Communications and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPLC.2013.6525825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

电力线通信的IEEE 1901标准的MAC层采用与无线通信的IEEE 802.11标准类似但更复杂的CSMA/CA方法。这些协议之间的差异引发了诸如哪一种协议在什么条件下性能更好之类的问题。我们研究了1901 MAC协议在单竞争域网络中的公平性,在这种网络中,所有站都能听到对方的声音。我们在分组级别检查公平性:如果所有站在固定的时间间隔内公平地共享介质,则MAC层协议是公平的。我们关注的是短期公平性,即在短时间间隔内的公平性。短期公平性直接影响最终用户体验,因为不公平的协议容易引入大量数据包延迟。我们用两个指标来评估短期公平性:Jain公平性指数和互传次数。我们给出了两种协议的试验台结果,并与仿真结果进行了比较。仿真和实验结果均表明,当基站数N在2 ~ 5之间时,802.11在短期内更为公平。然而,模拟结果表明,当N≥15时,1901在短期内更为公平。重要的是,我们的测试平台测量表明,当N = 2时,1901不公平性会导致显著的额外延迟。最后,我们通过分析证明1901年对于N = 2是短期不公平的,从而证实了这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fairness of MAC protocols: IEEE 1901 vs. 802.11
The MAC layer of the IEEE 1901 standard for power line communications employs a CSMA/CA method similar to, but more complex than, this of IEEE 802.11 for wireless communications. The differences between these protocols raise questions such as which one performs better and under what conditions. We study the fairness of the 1901 MAC protocol in single contention domain networks, where all stations hear each other. We examine fairness at the packet level: a MAC layer protocol is fair if all stations share equitably the medium during a fixed time interval. We focus on short-term fairness, that is, over short time intervals. Short-term fairness directly impacts end-user experience, because unfair protocols are susceptible to introduce substantial packet delays. We evaluate short-term fairness with two metrics: Jain's fairness index and the number of inter-transmissions. We present test-bed results of both protocols and compare them with simulations. Both simulation and test-bed results indicate that 802.11 is fairer in the short-term when the number of stations N is between 2 and 5. However, simulation results reveal that 1901 is fairer in the short-term for N ≥ 15. Importantly, our test-bed measurements indicate that 1901 unfairness can cause significant additional delay when N = 2. Finally, we confirm these results by showing analytically that 1901 is short-term unfair for N = 2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信