{"title":"del Pezzo表面的零循环(Daniel Coray主题变奏曲)","authors":"Jean-Louis Colliot-Th'elene","doi":"10.4171/LEM/66-3/4-8","DOIUrl":null,"url":null,"abstract":"In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1. \n---- \nUne surface cubique lisse qui possede un point ferme de degre premier a 3 possede un tel point de degre 1, 4 ou 10 (Coray, 1974). Un melange de generisation, de specialisation, de theoremes de Bertini et d'utilisation des corps fertiles donne de la souplesse a sa methode. Pour les surfaces cubiques avec un point rationnel, on montre que tout zero-cycle de degre au moins 10 est rationnellement equivalent a un zero-cycle effectif. On etablit l'analogue de ces resultats pour les surfaces de del Pezzo de degre 2 et de degre 1. On discute l'existence de points fermes de degre 3 non alignes sur une surface cubique sans point rationnel. On la relie a la question de la densite des points rationnels sur une surface de del Pezzo de degre 1.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray)\",\"authors\":\"Jean-Louis Colliot-Th'elene\",\"doi\":\"10.4171/LEM/66-3/4-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1. \\n---- \\nUne surface cubique lisse qui possede un point ferme de degre premier a 3 possede un tel point de degre 1, 4 ou 10 (Coray, 1974). Un melange de generisation, de specialisation, de theoremes de Bertini et d'utilisation des corps fertiles donne de la souplesse a sa methode. Pour les surfaces cubiques avec un point rationnel, on montre que tout zero-cycle de degre au moins 10 est rationnellement equivalent a un zero-cycle effectif. On etablit l'analogue de ces resultats pour les surfaces de del Pezzo de degre 2 et de degre 1. On discute l'existence de points fermes de degre 3 non alignes sur une surface cubique sans point rationnel. On la relie a la question de la densite des points rationnels sur une surface de del Pezzo de degre 1.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/66-3/4-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/66-3/4-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray)
In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1.
----
Une surface cubique lisse qui possede un point ferme de degre premier a 3 possede un tel point de degre 1, 4 ou 10 (Coray, 1974). Un melange de generisation, de specialisation, de theoremes de Bertini et d'utilisation des corps fertiles donne de la souplesse a sa methode. Pour les surfaces cubiques avec un point rationnel, on montre que tout zero-cycle de degre au moins 10 est rationnellement equivalent a un zero-cycle effectif. On etablit l'analogue de ces resultats pour les surfaces de del Pezzo de degre 2 et de degre 1. On discute l'existence de points fermes de degre 3 non alignes sur une surface cubique sans point rationnel. On la relie a la question de la densite des points rationnels sur une surface de del Pezzo de degre 1.