del Pezzo表面的零循环(Daniel Coray主题变奏曲)

Jean-Louis Colliot-Th'elene
{"title":"del Pezzo表面的零循环(Daniel Coray主题变奏曲)","authors":"Jean-Louis Colliot-Th'elene","doi":"10.4171/LEM/66-3/4-8","DOIUrl":null,"url":null,"abstract":"In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1. \n---- \nUne surface cubique lisse qui possede un point ferme de degre premier a 3 possede un tel point de degre 1, 4 ou 10 (Coray, 1974). Un melange de generisation, de specialisation, de theoremes de Bertini et d'utilisation des corps fertiles donne de la souplesse a sa methode. Pour les surfaces cubiques avec un point rationnel, on montre que tout zero-cycle de degre au moins 10 est rationnellement equivalent a un zero-cycle effectif. On etablit l'analogue de ces resultats pour les surfaces de del Pezzo de degre 2 et de degre 1. On discute l'existence de points fermes de degre 3 non alignes sur une surface cubique sans point rationnel. On la relie a la question de la densite des points rationnels sur une surface de del Pezzo de degre 1.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray)\",\"authors\":\"Jean-Louis Colliot-Th'elene\",\"doi\":\"10.4171/LEM/66-3/4-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1. \\n---- \\nUne surface cubique lisse qui possede un point ferme de degre premier a 3 possede un tel point de degre 1, 4 ou 10 (Coray, 1974). Un melange de generisation, de specialisation, de theoremes de Bertini et d'utilisation des corps fertiles donne de la souplesse a sa methode. Pour les surfaces cubiques avec un point rationnel, on montre que tout zero-cycle de degre au moins 10 est rationnellement equivalent a un zero-cycle effectif. On etablit l'analogue de ces resultats pour les surfaces de del Pezzo de degre 2 et de degre 1. On discute l'existence de points fermes de degre 3 non alignes sur une surface cubique sans point rationnel. On la relie a la question de la densite des points rationnels sur une surface de del Pezzo de degre 1.\",\"PeriodicalId\":278201,\"journal\":{\"name\":\"arXiv: Algebraic Geometry\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/66-3/4-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/66-3/4-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

1974年,D. Coray证明了在一个素数至3次闭点的光滑三次曲面上存在这样一个1、4或10次闭点。我们首先展示了泛化、专门化、伯蒂尼定理和大域的结合如何在他的论证中避免了对特殊情况的考虑。对于具有有理点的光滑三次曲面,我们证明了任何至少10次的零循环都是理性等价于有效循环。我们对二阶和一阶的del Pezzo曲面建立了类似的结果。对于无有理点的光滑三次曲面,我们将是否存在不在直线上的3次点的问题与1次del Pezzo曲面上有理点是否密集的问题联系起来。---- 1个表面的立方体具有1个点的时间度,1个点的时间度,3个点的时间度1,4或10 (Coray, 1974)。非泛化、非专门化、Bertini定理和利用的混合方法。每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,每一个点位,都相当于一个点位。在建立的l'模拟计算中,得到了del Pezzo 2度和1度表面的结果。关于点的离散存在性,3次不列曲面上无点的立方。在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上,在一个问题上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Zéro-cycles sur les surfaces de del Pezzo (Variations sur un thème de Daniel Coray)
In 1974, D. Coray showed that on a smooth cubic surface with a closed point of degree prime to 3 there exists such a point of degree 1, 4 or 10. We first show how a combination of generisation, specialisation, Bertini theorems and large fields avoids considerations of special cases in his argument. For smooth cubic surfaces with a rational point, we show that any zero-cycle of degree at least 10 is rationally equivalent to an effective cycle. We establish analogues of these results for del Pezzo surfaces of degree 2 and of degree 1. For smooth cubic surfaces without a rational point, we relate the question whether there exists a degree 3 point which is not on a line to the question whether rational points are dense on a del Pezzo surface of degree 1. ---- Une surface cubique lisse qui possede un point ferme de degre premier a 3 possede un tel point de degre 1, 4 ou 10 (Coray, 1974). Un melange de generisation, de specialisation, de theoremes de Bertini et d'utilisation des corps fertiles donne de la souplesse a sa methode. Pour les surfaces cubiques avec un point rationnel, on montre que tout zero-cycle de degre au moins 10 est rationnellement equivalent a un zero-cycle effectif. On etablit l'analogue de ces resultats pour les surfaces de del Pezzo de degre 2 et de degre 1. On discute l'existence de points fermes de degre 3 non alignes sur une surface cubique sans point rationnel. On la relie a la question de la densite des points rationnels sur une surface de del Pezzo de degre 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信