评估联邦学习中的匿名和自私搭便车攻击

Jianhua Wang, Xiaolin Chang, Ricardo J. Rodríguez, Yixiang Wang
{"title":"评估联邦学习中的匿名和自私搭便车攻击","authors":"Jianhua Wang, Xiaolin Chang, Ricardo J. Rodríguez, Yixiang Wang","doi":"10.1109/ISCC55528.2022.9912903","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) is a distributed learning framework and gains interest due to protecting the privacy of participants. Thus, if some participants are free-riders who are attackers without contributing any computation resources and privacy data, the model faces privacy leakage and inferior performance. In this paper, we explore and define two free-rider attack scenarios, anonymous and selfish free-rider attacks. Then we propose two methods, namely novel and advanced methods, to construct these two attacks. Extensive experiment results reveal the effectiveness in terms of the less deviation with conventional FL using the novel method, and high false positive rate to puzzle defense model using the advanced method.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Assessing Anonymous and Selfish Free-rider Attacks in Federated Learning\",\"authors\":\"Jianhua Wang, Xiaolin Chang, Ricardo J. Rodríguez, Yixiang Wang\",\"doi\":\"10.1109/ISCC55528.2022.9912903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning (FL) is a distributed learning framework and gains interest due to protecting the privacy of participants. Thus, if some participants are free-riders who are attackers without contributing any computation resources and privacy data, the model faces privacy leakage and inferior performance. In this paper, we explore and define two free-rider attack scenarios, anonymous and selfish free-rider attacks. Then we propose two methods, namely novel and advanced methods, to construct these two attacks. Extensive experiment results reveal the effectiveness in terms of the less deviation with conventional FL using the novel method, and high false positive rate to puzzle defense model using the advanced method.\",\"PeriodicalId\":309606,\"journal\":{\"name\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC55528.2022.9912903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

联邦学习(FL)是一种分布式学习框架,由于保护参与者的隐私而受到关注。因此,如果一些参与者是搭便车者,他们是攻击者,而不贡献任何计算资源和隐私数据,则模型将面临隐私泄露和性能下降的问题。本文探讨并定义了两种搭便车攻击场景:匿名搭便车攻击和自私搭便车攻击。然后,我们提出了两种方法,即新颖和先进的方法来构建这两种攻击。大量的实验结果表明,新方法在与常规FL的偏差较小、迷惑防御模型的误报率较高等方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Anonymous and Selfish Free-rider Attacks in Federated Learning
Federated Learning (FL) is a distributed learning framework and gains interest due to protecting the privacy of participants. Thus, if some participants are free-riders who are attackers without contributing any computation resources and privacy data, the model faces privacy leakage and inferior performance. In this paper, we explore and define two free-rider attack scenarios, anonymous and selfish free-rider attacks. Then we propose two methods, namely novel and advanced methods, to construct these two attacks. Extensive experiment results reveal the effectiveness in terms of the less deviation with conventional FL using the novel method, and high false positive rate to puzzle defense model using the advanced method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信