广义神经网络结构的反向传播算法

K. Krishnakumar
{"title":"广义神经网络结构的反向传播算法","authors":"K. Krishnakumar","doi":"10.1109/SECON.1992.202276","DOIUrl":null,"url":null,"abstract":"The author presents a generalized neural network structure and the associated backpropagation learning algorithm. This structure is an extension of a neural net structure presented by P.J. Werbos (1988, 1990). Generalization is aimed at ease of implementation and flexibility in structure selection. It is shown how certain network structures can be accommodated using this general structural form. Networks that are investigated include feedforward, recurrent, and memory networks.<<ETX>>","PeriodicalId":230446,"journal":{"name":"Proceedings IEEE Southeastcon '92","volume":"151 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Backpropagation algorithm for a generalized neural network structure\",\"authors\":\"K. Krishnakumar\",\"doi\":\"10.1109/SECON.1992.202276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author presents a generalized neural network structure and the associated backpropagation learning algorithm. This structure is an extension of a neural net structure presented by P.J. Werbos (1988, 1990). Generalization is aimed at ease of implementation and flexibility in structure selection. It is shown how certain network structures can be accommodated using this general structural form. Networks that are investigated include feedforward, recurrent, and memory networks.<<ETX>>\",\"PeriodicalId\":230446,\"journal\":{\"name\":\"Proceedings IEEE Southeastcon '92\",\"volume\":\"151 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings IEEE Southeastcon '92\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1992.202276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE Southeastcon '92","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1992.202276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种广义神经网络结构及其反向传播学习算法。该结构是P.J. Werbos(1988,1990)提出的神经网络结构的扩展。泛化的目的是为了便于实现和结构选择的灵活性。它显示了如何使用这种一般结构形式来适应某些网络结构。研究的网络包括前馈网络、循环网络和记忆网络
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backpropagation algorithm for a generalized neural network structure
The author presents a generalized neural network structure and the associated backpropagation learning algorithm. This structure is an extension of a neural net structure presented by P.J. Werbos (1988, 1990). Generalization is aimed at ease of implementation and flexibility in structure selection. It is shown how certain network structures can be accommodated using this general structural form. Networks that are investigated include feedforward, recurrent, and memory networks.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信