P. Kutas, Mickaël Montessinos, Gergely Zábrádi, T'imea Csah'ok
{"title":"特征为2的有理函数域上求二次型的非平凡零","authors":"P. Kutas, Mickaël Montessinos, Gergely Zábrádi, T'imea Csah'ok","doi":"10.1145/3476446.3535485","DOIUrl":null,"url":null,"abstract":"We propose polynomial-time algorithms for finding nontrivial zeros of quadratic forms with four variables over rational function fields of characteristic 2. We apply these results to find prescribed quadratic subfields of quaternion division algebras and zero divisors in $M_2(D)$, the full matrix algebra over a division algebra, given by structure constants. We also provide an implementation of our results in MAGMA which shows that the algorithms are truly practical.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finding Nontrivial Zeros of Quadratic Forms over Rational Function Fields of Characteristic 2\",\"authors\":\"P. Kutas, Mickaël Montessinos, Gergely Zábrádi, T'imea Csah'ok\",\"doi\":\"10.1145/3476446.3535485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose polynomial-time algorithms for finding nontrivial zeros of quadratic forms with four variables over rational function fields of characteristic 2. We apply these results to find prescribed quadratic subfields of quaternion division algebras and zero divisors in $M_2(D)$, the full matrix algebra over a division algebra, given by structure constants. We also provide an implementation of our results in MAGMA which shows that the algorithms are truly practical.\",\"PeriodicalId\":130499,\"journal\":{\"name\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3476446.3535485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Finding Nontrivial Zeros of Quadratic Forms over Rational Function Fields of Characteristic 2
We propose polynomial-time algorithms for finding nontrivial zeros of quadratic forms with four variables over rational function fields of characteristic 2. We apply these results to find prescribed quadratic subfields of quaternion division algebras and zero divisors in $M_2(D)$, the full matrix algebra over a division algebra, given by structure constants. We also provide an implementation of our results in MAGMA which shows that the algorithms are truly practical.