基于SVM的网络异常流量检测算法

Yang Lei
{"title":"基于SVM的网络异常流量检测算法","authors":"Yang Lei","doi":"10.1109/ICRIS.2017.61","DOIUrl":null,"url":null,"abstract":"In order to guarantee the high level of network security and improve the user experience of the network, in this paper, we propose an effective network anomaly traffic detection algorithm. Firstly, six types of network features are used in our work, such as 1) Number of source IP address, 2) Number of source port number, 3) Number of destination IP address, 4) Number of destination port number, 5) Number of packet type, 6) Number of distinct packets with same packet size. Afterwards, we discuss how to generate normalized entropy for the features which are exploited in the network anomaly traffic detection. Secondly, we convert the network traffic anomaly detection problem to a classification problem, and proposed a hybrid PSO-SVM model to solve it. Finally, experimental results demonstrate that the proposed method can detect different network traffic anomaly behaviors with high accuracy.","PeriodicalId":443064,"journal":{"name":"2017 International Conference on Robots & Intelligent System (ICRIS)","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Network Anomaly Traffic Detection Algorithm Based on SVM\",\"authors\":\"Yang Lei\",\"doi\":\"10.1109/ICRIS.2017.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to guarantee the high level of network security and improve the user experience of the network, in this paper, we propose an effective network anomaly traffic detection algorithm. Firstly, six types of network features are used in our work, such as 1) Number of source IP address, 2) Number of source port number, 3) Number of destination IP address, 4) Number of destination port number, 5) Number of packet type, 6) Number of distinct packets with same packet size. Afterwards, we discuss how to generate normalized entropy for the features which are exploited in the network anomaly traffic detection. Secondly, we convert the network traffic anomaly detection problem to a classification problem, and proposed a hybrid PSO-SVM model to solve it. Finally, experimental results demonstrate that the proposed method can detect different network traffic anomaly behaviors with high accuracy.\",\"PeriodicalId\":443064,\"journal\":{\"name\":\"2017 International Conference on Robots & Intelligent System (ICRIS)\",\"volume\":\"148 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Robots & Intelligent System (ICRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRIS.2017.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Robots & Intelligent System (ICRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIS.2017.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

为了保证高水平的网络安全,提高网络的用户体验,本文提出了一种有效的网络异常流量检测算法。首先,在我们的工作中使用了六种类型的网络特征,如1)源IP地址数量,2)源端口号数量,3)目的IP地址数量,4)目的端口号数量,5)数据包类型数量,6)相同数据包大小的不同数据包数量。然后,我们讨论了如何为网络异常流量检测中利用的特征生成归一化熵。其次,将网络流量异常检测问题转化为分类问题,提出了一种混合PSO-SVM模型来解决该问题。实验结果表明,该方法能够较准确地检测出不同的网络流量异常行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network Anomaly Traffic Detection Algorithm Based on SVM
In order to guarantee the high level of network security and improve the user experience of the network, in this paper, we propose an effective network anomaly traffic detection algorithm. Firstly, six types of network features are used in our work, such as 1) Number of source IP address, 2) Number of source port number, 3) Number of destination IP address, 4) Number of destination port number, 5) Number of packet type, 6) Number of distinct packets with same packet size. Afterwards, we discuss how to generate normalized entropy for the features which are exploited in the network anomaly traffic detection. Secondly, we convert the network traffic anomaly detection problem to a classification problem, and proposed a hybrid PSO-SVM model to solve it. Finally, experimental results demonstrate that the proposed method can detect different network traffic anomaly behaviors with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信