{"title":"ag -石墨烯纳米复合材料电荷转移复合物的形成及对MEH-PPV吸收能力的增强","authors":"Chenxin Ran, Minqiang Wang, Weiyin Gao, Zhi Yang, Xiangyu Zhang","doi":"10.1109/NANO.2013.6720824","DOIUrl":null,"url":null,"abstract":"In this work, we have synthesized Ag-Graphene Nanocompostie (AGN) by a simple method under mild condition. Further, Composites of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) participated by AGN have been studied. The interaction and photoluminescence quenching of MEH-PPV/AGN composites have been observed using UV-visible and fluorescence spectroscopy. Based on UV-visible spectrum of different concentration of AGN blending with MEH-PPV, the absorption range was markedly enlarged, indicating the formation of ground-state charge-transfer complex (CTC). Besides, photoluminescence (PL) spectra of the MEH-PPV/AGN nanocomposite show an efficient PL quenching effect. Both of these results indicate that AGN could apply in photovoltaic device as an acceptor material.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of charge-transfer complex and enlarging the absorption ability of MEH-PPV by Ag-Graphene Nanocomposite\",\"authors\":\"Chenxin Ran, Minqiang Wang, Weiyin Gao, Zhi Yang, Xiangyu Zhang\",\"doi\":\"10.1109/NANO.2013.6720824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have synthesized Ag-Graphene Nanocompostie (AGN) by a simple method under mild condition. Further, Composites of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) participated by AGN have been studied. The interaction and photoluminescence quenching of MEH-PPV/AGN composites have been observed using UV-visible and fluorescence spectroscopy. Based on UV-visible spectrum of different concentration of AGN blending with MEH-PPV, the absorption range was markedly enlarged, indicating the formation of ground-state charge-transfer complex (CTC). Besides, photoluminescence (PL) spectra of the MEH-PPV/AGN nanocomposite show an efficient PL quenching effect. Both of these results indicate that AGN could apply in photovoltaic device as an acceptor material.\",\"PeriodicalId\":189707,\"journal\":{\"name\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2013.6720824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6720824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formation of charge-transfer complex and enlarging the absorption ability of MEH-PPV by Ag-Graphene Nanocomposite
In this work, we have synthesized Ag-Graphene Nanocompostie (AGN) by a simple method under mild condition. Further, Composites of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) participated by AGN have been studied. The interaction and photoluminescence quenching of MEH-PPV/AGN composites have been observed using UV-visible and fluorescence spectroscopy. Based on UV-visible spectrum of different concentration of AGN blending with MEH-PPV, the absorption range was markedly enlarged, indicating the formation of ground-state charge-transfer complex (CTC). Besides, photoluminescence (PL) spectra of the MEH-PPV/AGN nanocomposite show an efficient PL quenching effect. Both of these results indicate that AGN could apply in photovoltaic device as an acceptor material.